Browsing by Author "Zeng, Zheng"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Ray-aligned Occupancy Map Array for Fast Approximate Ray Tracing(The Eurographics Association and John Wiley & Sons Ltd., 2023) Zeng, Zheng; Xu, Zilin; Wang, Lu; Wu, Lifan; Yan, Ling-Qi; Ritschel, Tobias; Weidlich, AndreaWe present a new software ray tracing solution that efficiently computes visibilities in dynamic scenes. We first introduce a novel scene representation: ray-aligned occupancy map array (ROMA) that is generated by rasterizing the dynamic scene once per frame. Our key contribution is a fast and low-divergence tracing method computing visibilities in constant time, without constructing and traversing the traditional intersection acceleration data structures such as BVH. To further improve accuracy and alleviate aliasing, we use a spatiotemporal scheme to stochastically distribute the candidate ray samples. We demonstrate the practicality of our method by integrating it into a modern real-time renderer and showing better performance compared to existing techniques based on distance fields (DFs). Our method is free of the typical artifacts caused by incomplete scene information, and is about 2.5×-10× faster than generating and tracing DFs at the same resolution and equal storage.Item Temporally Reliable Motion Vectors for Real-time Ray Tracing(The Eurographics Association and John Wiley & Sons Ltd., 2021) Zeng, Zheng; Liu, Shiqiu; Yang, Jinglei; Wang, Lu; Yan, Ling-Qi; Mitra, Niloy and Viola, IvanReal-time ray tracing (RTRT) is being pervasively applied. The key to RTRT is a reliable denoising scheme that reconstructs clean images from significantly undersampled noisy inputs, usually at 1 sample per pixel as limited by current hardware's computing power. The state of the art reconstruction methods all rely on temporal filtering to find correspondences of current pixels in the previous frame, described using per-pixel screen-space motion vectors. While these approaches are demonstrated powerful, they suffer from a common issue that the temporal information cannot be used when the motion vectors are not valid, i.e. when temporal correspondences are not obviously available or do not exist in theory. We introduce temporally reliable motion vectors that aim at deeper exploration of temporal coherence, especially for the generally-believed difficult applications on shadows, glossy reflections and occlusions, with the key idea to detect and track the cause of each effect. We show that our temporally reliable motion vectors produce significantly better temporal results on a variety of dynamic scenes when compared to the state of the art methods, but with negligible performance overhead.