Browsing by Author "Peng, Chi-Han"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Floor Plan Exploration Framework Based on Similarity Distances(The Eurographics Association, 2022) Shih, Chia-Ying; Peng, Chi-Han; Cabiddu, Daniela; Schneider, Teseo; Allegra, Dario; Catalano, Chiara Eva; Cherchi, Gianmarco; Scateni, RiccardoComputational methods to compute similarities between floor plans can help architects explore floor plans in large datasets to avoid duplication of designs and to search for existing plans that satisfy their needs. Recently, LayoutGMN [PLF*21] delivered state-of-the-art performance for computing similarity scores between floor plans. However, the high computational costs of LayoutGMN make it unsuitable for the aforementioned applications. In this paper, we significantly reduced the times needed to query results computed by LayoutGMN by projecting the floor plans into a common low-dimensional (e.g., three) data space. The projection is done by optimizing for coordinates of floor plans with Euclidean distances mimicking their similarity scores originally calculated by LayoutGMN. Quantitative and qualitative evaluations show that our results match the distributions of the original LayoutGMN similarity scores. User study shows that our similarity results largely match human expectations.Item Optimizing Placements of 360° Panoramic Cameras in Indoor Environments by Integer Programming(The Eurographics Association, 2022) Syu, Syuan-Rong; Peng, Chi-Han; Cabiddu, Daniela; Schneider, Teseo; Allegra, Dario; Catalano, Chiara Eva; Cherchi, Gianmarco; Scateni, RiccardoWe propose a computational approach to find a minimal set of 360° camera placements that together sufficiently cover an indoor environment for the building documentation problem in the architecture, engineering, and construction (AEC) industries. Our approach, based on a simple integer programming (IP) problem formulation, solves very efficiently and globally optimally. We conducted a study of using panoramas to capture the appearances of a real-world indoor environment, in which we found that our computed solutions are better than human solutions decided by both non-professional and professional users.