Browsing by Author "Meka, Abhimitra"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item GANtlitz: Ultra High Resolution Generative Model for Multi-Modal Face Textures(The Eurographics Association and John Wiley & Sons Ltd., 2024) Gruber, Aurel; Collins, Edo; Meka, Abhimitra; Mueller, Franziska; Sarkar, Kripasindhu; Orts-Escolano, Sergio; Prasso, Luca; Busch, Jay; Gross, Markus; Beeler, Thabo; Bermano, Amit H.; Kalogerakis, EvangelosHigh-resolution texture maps are essential to render photoreal digital humans for visual effects or to generate data for machine learning. The acquisition of high resolution assets at scale is cumbersome, it involves enrolling a large number of human subjects, using expensive multi-view camera setups, and significant manual artistic effort to align the textures. To alleviate these problems, we introduce GANtlitz (A play on the german noun Antlitz, meaning face), a generative model that can synthesize multi-modal ultra-high-resolution face appearance maps for novel identities. Our method solves three distinct challenges: 1) unavailability of a very large data corpus generally required for training generative models, 2) memory and computational limitations of training a GAN at ultra-high resolutions, and 3) consistency of appearance features such as skin color, pores and wrinkles in high-resolution textures across different modalities. We introduce dual-style blocks, an extension to the style blocks of the StyleGAN2 architecture, which improve multi-modal synthesis. Our patch-based architecture is trained only on image patches obtained from a small set of face textures (<100) and yet allows us to generate seamless appearance maps of novel identities at 6k×4k resolution. Extensive qualitative and quantitative evaluations and baseline comparisons show the efficacy of our proposed system.Item Live Inverse Rendering(SciDok - Der Wissenschaftsserver der Universität des Saarlandes, 2020-02-03) Meka, AbhimitraThe field of computer graphics is being transformed by the process of ‘personalization’. The advent of augmented and mixed reality technology is challenging the existing graphics systems, which traditionally required elaborate hardware and skilled artistic efforts. Now, photorealistic graphics are require to be rendered on mobile devices with minimal sensors and compute power, and integrated with the real world environment automatically. Seamlessly integrating graphics into real environments requires the estimation of the fundamental light transport components of a scene - geometry, reflectance and illumination. While estimating environmental geometry and self-localization on mobile devices has progressed rapidly, the task of estimating scene reflectance and illumination from monocular images or videos in real-time (termed live inverse rendering) is still at a nascent stage. The challenge is that of designing efficient representations and models for these appearance parameters and solving the resulting high-dimensional, non-linear and under-constrained system of equations at frame rate. This thesis comprehensively explores, for the first time, various representations, formulations, algorithms and systems for addressing these challenges in monocular inverse rendering. Starting with simple assumptions on the light transport model – of Lambertian surface reflectance and single light bounce scenario – the thesis expands in various directions by including 3D geometry, multiple light bounces, non-Lambertian isotropic surface reflectance and data-driven reflectance representation to address various facets of this problem. In the first part, the thesis explores the design of fast parallel non-linear GPU optimization schemes for solving both sparse and dense set of equations underlying the inverse rendering problem. In the next part, it applies the current advances in machine learning methods to design novel formulations and loss-energies to give a significant push to the stateof-the-art of reflectance and illumination estimation. Several real-time applications of illumination-aware scene editing, including relighting and material-cloning, are also shown to be made possible for first time by the new models proposed in this thesis. Finally, an outlook for future work on this problem is laid out, with particular emphasis on the interesting new opportunities afforded by the recent advances in machine learning.Item ShellNeRF: Learning a Controllable High-resolution Model of the Eye and Periocular Region(The Eurographics Association and John Wiley & Sons Ltd., 2024) Li, Gengyan; Sarkar, Kripasindhu; Meka, Abhimitra; Buehler, Marcel; Mueller, Franziska; Gotardo, Paulo; Hilliges, Otmar; Beeler, Thabo; Bermano, Amit H.; Kalogerakis, EvangelosEye gaze and expressions are crucial non-verbal signals in face-to-face communication. Visual effects and telepresence demand significant improvements in personalized tracking, animation, and synthesis of the eye region to achieve true immersion. Morphable face models, in combination with coordinate-based neural volumetric representations, show promise in solving the difficult problem of reconstructing intricate geometry (eyelashes) and synthesizing photorealistic appearance variations (wrinkles and specularities) of eye performances. We propose a novel hybrid representation - ShellNeRF - that builds a discretized volume around a 3DMM face mesh using concentric surfaces to model the deformable 'periocular' region. We define a canonical space using the UV layout of the shells that constrains the space of dense correspondence search. Combined with an explicit eyeball mesh for modeling corneal light-transport, our model allows for animatable photorealistic 3D synthesis of the whole eye region. Using multi-view video input, we demonstrate significant improvements over state-of-the-art in expression re-enactment and transfer for high-resolution close-up views of the eye region.