Browsing by Author "Xie, Haoran"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Contrastive Semantic-Guided Image Smoothing Network(The Eurographics Association and John Wiley & Sons Ltd., 2022) Wang, Jie; Wang, Yongzhen; Feng, Yidan; Gong, Lina; Yan, Xuefeng; Xie, Haoran; Wang, Fu Lee; Wei, Mingqiang; Umetani, Nobuyuki; Wojtan, Chris; Vouga, EtienneImage smoothing is a fundamental low-level vision task that aims to preserve salient structures of an image while removing insignificant details. Deep learning has been explored in image smoothing to deal with the complex entanglement of semantic structures and trivial details. However, current methods neglect two important facts in smoothing: 1) naive pixel-level regression supervised by the limited number of high-quality smoothing ground-truth could lead to domain shift and cause generalization problems towards real-world images; 2) texture appearance is closely related to object semantics, so that image smoothing requires awareness of semantic difference to apply adaptive smoothing strengths. To address these issues, we propose a novel Contrastive Semantic-Guided Image Smoothing Network (CSGIS-Net) that combines both contrastive prior and semantic prior to facilitate robust image smoothing. The supervision signal is augmented by leveraging undesired smoothing effects as negative teachers, and by incorporating segmentation tasks to encourage semantic distinctiveness. To realize the proposed network, we also enrich the original VOC dataset with texture enhancement and smoothing labels, namely VOC-smooth, which first bridges image smoothing and semantic segmentation. Extensive experiments demonstrate that the proposed CSGIS-Net outperforms state-of-the-art algorithms by a large margin. Code and dataset are available at https://github.com/wangjie6866/CSGIS-Net.Item GlassNet: Label Decoupling‐based Three‐stream Neural Network for Robust Image Glass Detection(© 2022 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2022) Zheng, Chengyu; Shi, Ding; Yan, Xuefeng; Liang, Dong; Wei, Mingqiang; Yang, Xin; Guo, Yanwen; Xie, Haoran; Hauser, Helwig and Alliez, PierreMost of the existing object detection methods generate poor glass detection results, due to the fact that the transparent glass shares the same appearance with arbitrary objects behind it in an image. Different from traditional deep learning‐based wisdoms that simply use the object boundary as an auxiliary supervision, we exploit label decoupling to decompose the original labelled ground‐truth (GT) map into an interior‐diffusion map and a boundary‐diffusion map. The GT map in collaboration with the two newly generated maps breaks the imbalanced distribution of the object boundary, leading to improved glass detection quality. We have three key contributions to solve the transparent glass detection problem: (1) We propose a three‐stream neural network (call GlassNet for short) to fully absorb beneficial features in the three maps. (2) We design a multi‐scale interactive dilation module to explore a wider range of contextual information. (3) We develop an attention‐based boundary‐aware feature Mosaic module to integrate multi‐modal information. Extensive experiments on the benchmark dataset exhibit clear improvements of our method over SOTAs, in terms of both the overall glass detection accuracy and boundary clearness.Item Semi-MoreGAN: Semi-supervised Generative Adversarial Network for Mixture of Rain Removal(The Eurographics Association and John Wiley & Sons Ltd., 2022) Shen, Yiyang; Wang, Yongzhen; Wei, Mingqiang; Chen, Honghua; Xie, Haoran; Cheng, Gary; Wang, Fu Lee; Umetani, Nobuyuki; Wojtan, Chris; Vouga, EtienneReal-world rain is a mixture of rain streaks and rainy haze. However, current efforts formulate image rain streaks removal and rainy haze removal as separated models, worsening the loss of image details. This paper attempts to solve the mixture of rain removal problem in a single model by estimating the scene depths of images. To this end, we propose a novel SEMIsupervised Mixture Of rain REmoval Generative Adversarial Network (Semi-MoreGAN). Unlike most of existing methods, Semi-MoreGAN is a joint learning paradigm of mixture of rain removal and depth estimation; and it effectively integrates the image features with the depth information for better rain removal. Furthermore, it leverages unpaired real-world rainy and clean images to bridge the gap between synthetic and real-world rain. Extensive experiments show clear improvements of our approach over twenty representative state-of-the-arts on both synthetic and real-world rainy images. Source code is available at https://github.com/syy-whu/Semi-MoreGAN.Item TogetherNet: Bridging Image Restoration and Object Detection Together via Dynamic Enhancement Learning(The Eurographics Association and John Wiley & Sons Ltd., 2022) Wang, Yongzhen; Yan, Xuefeng; Zhang, Kaiwen; Gong, Lina; Xie, Haoran; Wang, Fu Lee; Wei, Mingqiang; Umetani, Nobuyuki; Wojtan, Chris; Vouga, EtienneAdverse weather conditions such as haze, rain, and snow often impair the quality of captured images, causing detection networks trained on normal images to generalize poorly in these scenarios. In this paper, we raise an intriguing question - if the combination of image restoration and object detection, can boost the performance of cutting-edge detectors in adverse weather conditions. To answer it, we propose an effective yet unified detection paradigm that bridges these two subtasks together via dynamic enhancement learning to discern objects in adverse weather conditions, called TogetherNet. Different from existing efforts that intuitively apply image dehazing/deraining as a pre-processing step, TogetherNet considers a multi-task joint learning problem. Following the joint learning scheme, clean features produced by the restoration network can be shared to learn better object detection in the detection network, thus helping TogetherNet enhance the detection capacity in adverse weather conditions. Besides the joint learning architecture, we design a new Dynamic Transformer Feature Enhancement module to improve the feature extraction and representation capabilities of TogetherNet. Extensive experiments on both synthetic and real-world datasets demonstrate that our TogetherNet outperforms the state-of-the-art detection approaches by a large margin both quantitatively and qualitatively. Source code is available at https://github.com/yz-wang/TogetherNet.