Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Zhu, Hang"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Two-phase Hair Image Synthesis by Self-Enhancing Generative Model
    (The Eurographics Association and John Wiley & Sons Ltd., 2019) Qiu, Haonan; Wang, Chuan; Zhu, Hang; zhu, xiangyu; Gu, Jinjin; Han, Xiaoguang; Lee, Jehee and Theobalt, Christian and Wetzstein, Gordon
    Generating plausible hair image given limited guidance, such as sparse sketches or low-resolution image, has been made possible with the rise of Generative Adversarial Networks (GANs). Traditional image-to-image translation networks can generate recognizable results, but finer textures are usually lost and blur artifacts commonly exist. In this paper, we propose a two-phase generative model for high-quality hair image synthesis. The two-phase pipeline first generates a coarse image by an existing image translation model, then applies a re-generating network with self-enhancing capability to the coarse image. The selfenhancing capability is achieved by a proposed differentiable layer, which extracts the structural texture and orientation maps from a hair image. Extensive experiments on two tasks, Sketch2Hair and Hair Super-Resolution, demonstrate that our approach is able to synthesize plausible hair image with finer details, and reaches the state-of-the-art.

Eurographics Association © 2013-2025  |  System hosted at Graz University of Technology      
DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback