Browsing by Author "Philip, Julien"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Floaters No More: Radiance Field Gradient Scaling for Improved Near-Camera Training(The Eurographics Association, 2023) Philip, Julien; Deschaintre, Valentin; Ritschel, Tobias; Weidlich, AndreaNeRF acquisition typically requires careful choice of near planes for the different cameras or suffers from background collapse, creating floating artifacts on the edges of the captured scene. The key insight of this work is that background collapse is caused by a higher density of samples in regions near cameras. As a result of this sampling imbalance, near-camera volumes receive significantly more gradients, leading to incorrect density buildup. We propose a gradient scaling approach to counter-balance this sampling imbalance, removing the need for near planes, while preventing background collapse. Our method can be implemented in a few lines, does not induce any significant overhead, and is compatible with most NeRF implementations.Item Multi-view image-based editing and rendering through deep learning and optimization(2020-09-25) Philip, JulienComputer-generated imagery (CGI) takes a growing place in our everyday environment. Whether it is in video games or movies, CGI techniques are constantly improving in quality but also require ever more qualitative artistic content which takes a growing time to create. With the emergence of virtual and augmented reality, often comes the need to render or re-render assets that exist in our world. To allow widespread use of CGI in applications such as telepresence or virtual visits, the need for manual artistic replication of assets must be removed from the process. This can be done with the help of Image-Based Rendering (IBR) techniques that allow scenes or objects to be rendered in a free-viewpoint manner from a set of sparse input photographs. While this process requires little to no artistic work, it also does not allow for artistic control or editing of scene content. In this dissertation, we explore Multi-view Image Editing and Rendering. To allow casually captured scenes to be rendered with content alterations such as object removal, lighting edition, or scene compositing, we leverage the use of optimization techniques and modern deep-learning. We design our methods to take advantage of all the information present in multi-view content while handling specific constraints such as multi-view coherency. For object removal, we introduce a new plane-based multi-view inpainting algorithm. Planes are a simple yet effective way to fill geometry and they naturally enforce multi-view coherency as inpainting is computed in a shared rectified texture space, allowing us to correctly respect perspective. We demonstrate instance-based object removal at the scale of a street in scenes composed of several hundreds of images. We next address outdoor relighting with a learning-based algorithm that efficiently allows the illumination in a scene to be changed, while removing and synthesizing cast shadows for any given sun position and accounting for global illumination. An approximate geometric proxy built using multi-view stereo is used to generate illumination and shadow related image buffers that guide a neural network. We train this network on a set of synthetic scenes allowing full supervision of the learning pipeline. Careful data augmentation allows our network to transfer to real scenes and provides state of the art relighting results. We also demonstrate the capacity of this network to be used to compose real scenes captured under different lighting conditions and orientation. We then present contributions to image-based rendering quality. We discuss how our carefully designed depth-map meshing and simplification algorithm improve rendering performance and quality of a new learning-based IBR method. Finally, we present a method that combines relighting, IBR, and material analysis. To enable relightable IBR with accurate glossy effects, we extract both material appearance variations and qualitative texture information from multi-view content in the form of several IBR heuristics. We further combine them with path-traced irradiance images that specify the input and target lighting. This combination allows a neural network to be trained to implicitly extract material properties and produce realistic-looking relit viewpoints. Separating diffuse and specular supervision is crucial in obtaining high-quality output.Item OutCast: Outdoor Single-image Relighting with Cast Shadows(The Eurographics Association and John Wiley & Sons Ltd., 2022) Griffiths, David; Ritschel, Tobias; Philip, Julien; Chaine, Raphaëlle; Kim, Min H.We propose a relighting method for outdoor images. Our method mainly focuses on predicting cast shadows in arbitrary novel lighting directions from a single image while also accounting for shading and global effects such the sun light color and clouds. Previous solutions for this problem rely on reconstructing occluder geometry, e. g., using multi-view stereo, which requires many images of the scene. Instead, in this work we make use of a noisy off-the-shelf single-image depth map estimation as a source of geometry. Whilst this can be a good guide for some lighting effects, the resulting depth map quality is insufficient for directly ray-tracing the shadows. Addressing this, we propose a learned image space ray-marching layer that converts the approximate depth map into a deep 3D representation that is fused into occlusion queries using a learned traversal. Our proposed method achieves, for the first time, state-of-the-art relighting results, with only a single image as input.Item Point-Based Neural Rendering with Per-View Optimization(The Eurographics Association and John Wiley & Sons Ltd., 2021) Kopanas, Georgios; Philip, Julien; Leimkühler, Thomas; Drettakis, George; Bousseau, Adrien and McGuire, MorganThere has recently been great interest in neural rendering methods. Some approaches use 3D geometry reconstructed with Multi-View Stereo (MVS) but cannot recover from the errors of this process, while others directly learn a volumetric neural representation, but suffer from expensive training and inference. We introduce a general approach that is initialized with MVS, but allows further optimization of scene properties in the space of input views, including depth and reprojected features, resulting in improved novel-view synthesis. A key element of our approach is our new differentiable point-based pipeline, based on bi-directional Elliptical Weighted Average splatting, a probabilistic depth test and effective camera selection. We use these elements together in our neural renderer, that outperforms all previous methods both in quality and speed in almost all scenes we tested. Our pipeline can be applied to multi-view harmonization and stylization in addition to novel-view synthesis.