Browsing by Author "Calì, Corrado"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item A Gaze Detection System for Neuropsychiatric Disorders Remote Diagnosis Support(The Eurographics Association, 2023) Cangelosi, Antonio; Antola, Gabriele; Iacono, Alberto Lo; Santamaria, Alfonso; Clerico, Marinella; Al-Thani, Dena; Agus, Marco; Calì, Corrado; Banterle, Francesco; Caggianese, Giuseppe; Capece, Nicola; Erra, Ugo; Lupinetti, Katia; Manfredi, GildaAccurate and early diagnosis of neuropsychiatric disorders, such as Autism Spectrum Disorders (ASD) is a significant challenge in clinical practice. This study explores the use of real-time gaze tracking as a tool for unbiased and quantitative analysis of eye gaze. The results of this study could support the diagnosis of disorders and potentially be used as a tool in the field of rehabilitation. The proposed setup consists of an RGB-D camera embedded in the latest-generation smartphones and a set of processing components for the analysis of recorded data related to patient interactivity. The proposed system is easy to use and doesn't require much knowledge or expertise. It also achieves a high level of accuracy. Because of this, it can be used remotely (telemedicine) to simplify diagnosis and rehabilitation processes. We present initial findings that show how real-time gaze tracking can be a valuable tool for doctors. It is a non-invasive device that provides unbiased quantitative data that can aid in early detection, monitoring, and treatment evaluation. This study's findings have significant implications for the advancement of ASD research. The innovative approach proposed in this study has the potential to enhance diagnostic accuracy and improve patient outcomes.Item Immersive Environment for Creating, Proofreading, and Exploring Skeletons of Nanometric Scale Neural Structures(The Eurographics Association, 2019) Boges, Daniya; Calì, Corrado; Magistretti, Pierre J.; Hadwiger, Markus; Sicat, Ronell; Agus, Marco; Agus, Marco and Corsini, Massimiliano and Pintus, RuggeroWe present a novel immersive environment for the exploratory analysis of nanoscale cellular reconstructions of rodent brain samples acquired through electron microscopy. The system is focused on medial axis representations (skeletons) of branched and tubular structures of brain cells, and it is specifically designed for: i) effective semi-automatic creation of skeletons from surface-based representations of cells and structures, ii) fast proofreading, i.e., correcting and editing of semi-automatically constructed skeleton representations, and iii) useful exploration, i.e., measuring, comparing, and analyzing geometric features related to cellular structures based on medial axis representations. The application runs in a standard PC-tethered virtual reality (VR) setup with a head mounted display (HMD), controllers, and tracking sensors. The system is currently used by neuroscientists for performing morphology studies on sparse reconstructions of glial cells and neurons extracted from a sample of the somatosensory cortex of a juvenile rat.Item Interactive Volumetric Visual Analysis of Glycogen-derived Energy Absorption in Nanometric Brain Structures(The Eurographics Association and John Wiley & Sons Ltd., 2019) Agus, Marco; Calì, Corrado; Al-Awami, Ali K.; Gobbetti, Enrico; Magistretti, Pierre J.; Hadwiger, Markus; Gleicher, Michael and Viola, Ivan and Leitte, HeikeDigital acquisition and processing techniques are changing the way neuroscience investigation is carried out. Emerging applications range from statistical analysis on image stacks to complex connectomics visual analysis tools targeted to develop and test hypotheses of brain development and activity. In this work, we focus on neuroenergetics, a field where neuroscientists analyze nanoscale brain morphology and relate energy consumption to glucose storage in form of glycogen granules. In order to facilitate the understanding of neuroenergetic mechanisms, we propose a novel customized pipeline for the visual analysis of nanometric-level reconstructions based on electron microscopy image data. Our framework supports analysis tasks by combining i) a scalable volume visualization architecture able to selectively render image stacks and corresponding labelled data, ii) a method for highlighting distance-based energy absorption probabilities in form of glow maps, and iii) a hybrid connectivitybased and absorption-based interactive layout representation able to support queries for selective analysis of areas of interest and potential activity within the segmented datasets. This working pipeline is currently used in a variety of studies in the neuroenergetics domain. Here, we discuss a test case in which the framework was successfully used by domain scientists for the analysis of aging effects on glycogen metabolism, extracting knowledge from a series of nanoscale brain stacks of rodents somatosensory cortex.Item Mixed Reality for Orthopedic Elbow Surgery Training and Operating Room Applications: A Preliminary Analysis(The Eurographics Association, 2023) Cangelosi, Antonio; Riberi, Giacomo; Salvi, Massimo; Molinari, Filippo; Titolo, Paolo; Agus, Marco; Calì, Corrado; Banterle, Francesco; Caggianese, Giuseppe; Capece, Nicola; Erra, Ugo; Lupinetti, Katia; Manfredi, GildaThe use of Mixed Reality in medicine is widely documented to be a candidate to revolutionize surgical interventions. In this paper we present a system to simulate k-wire placement, that is a common orthopedic procedure used to stabilize fractures, dislocations, and other traumatic injuries.With the described system, it is possible to leverage Mixed Reality (MR) and advanced visualization techniques applied on a surgical simulation phantom to enhance surgical training and critical orthopedic surgical procedures. This analysis is centered on evaluating the precision and proficiency of k-wire placement in an elbow surgical phantom, designed with a 3D modeling software starting from a virtual 3D anatomical reference. By visually superimposing 3D reconstructions of internal structures and the target K-wire positioning on the physical model, it is expected not only to improve the learning curve but also to establish a foundation for potential real-time surgical guidance in challenging clinical scenarios. The performance is measured as the difference between K-wires real placement in respect to target position; the quantitative measurements are then used to compare the risk of iatrogenic injury to nerves and vascular structures of MRguided vs non MR-guided simulated interventions.