Browsing by Author "Oberlaender, Marcel"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Rapid Prototyping for Coordinated Views of Multi-scale Spatial and Abstract Data: A Grammar-based Approach(The Eurographics Association, 2023) Harth, Philipp; Bast, Arco; Troidl, Jakob; Meulemeester, Bjorge; Pfister, Hanspeter; Beyer, Johanna; Oberlaender, Marcel; Hege, Hans-Christian; Baum, Daniel; Hansen, Christian; Procter, James; Renata G. Raidou; Jönsson, Daniel; Höllt, ThomasVisualization grammars are gaining popularity as they allow visualization specialists and experienced users to quickly create static and interactive views. Existing grammars, however, mostly focus on abstract views, ignoring three-dimensional (3D) views, which are very important in fields such as natural sciences. We propose a generalized interaction grammar for the problem of coordinating heterogeneous view types, such as standard charts (e.g., based on Vega-Lite) and 3D anatomical views. An important aspect of our web-based framework is that user interactions with data items at various levels of detail can be systematically integrated and used to control the overall layout of the application workspace. With the help of a concise JSON-based specification of the intended workflow, we can handle complex interactive visual analysis scenarios. This enables rapid prototyping and iterative refinement of the visual analysis tool in collaboration with domain experts. We illustrate the usefulness of our framework in two real-world case studies from the field of neuroscience. Since the logic of the presented grammar-based approach for handling interactions between heterogeneous web-based views is free of any application specifics, it can also serve as a template for applications beyond biological research.Item A Stratification Matrix Viewer for Analysis of Neural Network Data(The Eurographics Association, 2022) Harth, Philipp; Vohra, Sumit; Udvary, Daniel; Oberlaender, Marcel; Hege, Hans-Christian; Baum, Daniel; Renata G. Raidou; Björn Sommer; Torsten W. Kuhlen; Michael Krone; Thomas Schultz; Hsiang-Yun WuThe analysis of brain networks is central to neurobiological research. In this context the following tasks often arise: (1) understand the cellular composition of a reconstructed neural tissue volume to determine the nodes of the brain network; (2) quantify connectivity features statistically; and (3) compare these to predictions of mathematical models. We present a framework for interactive, visually supported accomplishment of these tasks. Its central component, the stratification matrix viewer, allows users to visualize the distribution of cellular and/or connectional properties of neurons at different levels of aggregation. We demonstrate its use in four case studies analyzing neural network data from the rat barrel cortex and human temporal cortex.