Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Billeter, Markus"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A Practical and Efficient Approach for Correct Z-Pass Stencil Shadow Volumes
    (The Eurographics Association, 2019) Usta, Baran; Scandolo, Leonardo; Billeter, Markus; Marroquim, Ricardo; Eisemann, Elmar; Steinberger, Markus and Foley, Tim
    Shadow volumes are a popular technique to compute pixel-accurate hard shadows in 3D scenes. Many variants exist that trade off accuracy and efficiency. In this work, we present an artifact-free, efficient, and easy-to-implement stencil shadow volume method. We compare our method to established stencil shadow volume techniques and show that it outperforms the alternatives.
  • Loading...
    Thumbnail Image
    Item
    ShutterApp: Spatio-temporal Exposure Control for Videos
    (The Eurographics Association and John Wiley & Sons Ltd., 2019) Salamon, Nestor; Billeter, Markus; Eisemann, Elmar; Lee, Jehee and Theobalt, Christian and Wetzstein, Gordon
    A camera's shutter controls the incoming light that is reaching the camera sensor. Different shutters lead to wildly different results, and are often used as a tool in movies for artistic purpose, e.g., they can indirectly control the effect of motion blur. However, a physical camera is limited to a single shutter setting at any given moment. ShutterApp enables users to define spatio-temporally-varying virtual shutters that go beyond the options available in real-world camera systems. A user provides a sparse set of annotations that define shutter functions at selected locations in key frames. From this input, our solution defines shutter functions for each pixel of the video sequence using a suitable interpolation technique, which are then employed to derive the output video. Our solution performs in real-time on commodity hardware. Hereby, users can explore different options interactively, leading to a new level of expressiveness without having to rely on specialized hardware or laborious editing.

Eurographics Association © 2013-2025  |  System hosted at Graz University of Technology      
DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback