Browsing by Author "Chaudhuri, Siddhartha"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Learning Generative Models of 3D Structures(The Eurographics Association and John Wiley & Sons Ltd., 2020) Chaudhuri, Siddhartha; Ritchie, Daniel; Wu, Jiajun; Xu, Kai; Zhang, Hao; Mantiuk, Rafal and Sundstedt, Veronica3D models of objects and scenes are critical to many academic disciplines and industrial applications. Of particular interest is the emerging opportunity for 3D graphics to serve artificial intelligence: computer vision systems can benefit from syntheticallygenerated training data rendered from virtual 3D scenes, and robots can be trained to navigate in and interact with real-world environments by first acquiring skills in simulated ones. One of the most promising ways to achieve this is by learning and applying generative models of 3D content: computer programs that can synthesize new 3D shapes and scenes. To allow users to edit and manipulate the synthesized 3D content to achieve their goals, the generative model should also be structure-aware: it should express 3D shapes and scenes using abstractions that allow manipulation of their high-level structure. This state-of-theart report surveys historical work and recent progress on learning structure-aware generative models of 3D shapes and scenes. We present fundamental representations of 3D shape and scene geometry and structures, describe prominent methodologies including probabilistic models, deep generative models, program synthesis, and neural networks for structured data, and cover many recent methods for structure-aware synthesis of 3D shapes and indoor scenes.Item Learning Generative Models of 3D Structures(The Eurographics Association, 2019) Chaudhuri, Siddhartha; Ritchie, Daniel; Xu, Kai; Zhang, Hao (Richard); Jakob, Wenzel and Puppo, EnricoMany important applications demand 3D content, yet 3D modeling is a notoriously difficult and inaccessible activity. This tutorial provides a crash course in one of the most promising approaches for democratizing 3D modeling: learning generative models of 3D structures. Such generative models typically describe a statistical distribution over a space of possible 3D shapes or 3D scenes, as well as a procedure for sampling new shapes or scenes from the distribution. To be useful by non-experts for design purposes, a generative model must represent 3D content at a high level of abstraction in which the user can express their goals-that is, it must be structure-aware. In this tutorial, we will take a deep dive into the most exciting methods for building generative models of both individual shapes as well as composite scenes, highlighting how standard data-driven methods need to be adapted, or new methods developed, to create models that are both generative and structure-aware. The tutorial assumes knowledge of the fundamentals of computer graphics, linear algebra, and probability, though a quick refresher of important algorithmic ideas from geometric analysis and machine learning is included. Attendees should come away from this tutorial with a broad understanding of the historical and current work in generative 3D modeling, as well as familiarity with the mathematical tools needed to start their own research or product development in this area.