Browsing by Author "Guérin, Eric"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Gradient Terrain Authoring(The Eurographics Association and John Wiley & Sons Ltd., 2022) Guérin, Eric; Peytavie, Adrien; Masnou, Simon; Digne, Julie; Sauvage, Basile; Gain, James; Galin, Eric; Chaine, Raphaëlle; Kim, Min H.Digital terrains are a foundational element in the computer-generated depiction of natural scenes. Given the variety and complexity of real-world landforms, there is a need for authoring solutions that achieve perceptually realistic outcomes without sacrificing artistic control. In this paper, we propose setting aside the elevation domain in favour of modelling in the gradient domain. Such a slope-based representation is height independent and allows a seamless blending of disparate landforms from procedural, simulation, and real-world sources. For output, an elevation model can always be recovered using Poisson reconstruction, which can include Dirichlet conditions to constrain the elevation of points and curves. In terms of authoring our approach has numerous benefits. It provides artists with a complete toolbox, including: cut-and-paste operations that support warping as needed to fit the destination terrain, brushes to modify region characteristics, and sketching to provide point and curve constraints on both elevation and gradient. It is also a unifying representation that enables the inclusion of tools from the spectrum of existing procedural and simulation methods, such as painting localised high-frequency noise or hydraulic erosion, without breaking the formalism. Finally, our constrained reconstruction is GPU optimized and executes in real-time, which promotes productive cycles of iterative authoring.Item Procedural Tectonic Planets(The Eurographics Association and John Wiley & Sons Ltd., 2019) Cortial, Yann; Peytavie, Adrien; Galin, Eric; Guérin, Eric; Alliez, Pierre and Pellacini, FabioWe present a procedural method for authoring synthetic tectonic planets. Instead of relying on computationally demanding physically-based simulations, we capture the fundamental phenomena into a procedural method that faithfully reproduces largescale planetary features generated by the movement and collision of the tectonic plates. We approximate complex phenomena such as plate subduction or collisions to deform the lithosphere, including the continental and oceanic crusts. The user can control the movement of the plates, which dynamically evolve and generate a variety of landforms such as continents, oceanic ridges, large scale mountain ranges or island arcs. Finally, we amplify the large-scale planet model with either procedurallydefined or real-world elevation data to synthesize coherent detailed reliefs. Our method allows the user to control the evolution of an entire planet interactively, and to trigger specific events such as catastrophic plate rifting.Item A Review of Digital Terrain Modeling(The Eurographics Association and John Wiley & Sons Ltd., 2019) Galin, Eric; Guérin, Eric; Peytavie, Adrien; Cordonnier, Guillaume; Cani, Marie-Paule; Benes, Bedrich; Gain, James; Giachetti, Andrea and Rushmeyer, HollyTerrains are a crucial component of three-dimensional scenes and are present in many Computer Graphics applications. Terrain modeling methods focus on capturing landforms in all their intricate detail, including eroded valleys arising from the interplay of varied phenomena, dendritic mountain ranges, and complex river networks. Set against this visual complexity is the need for user control over terrain features, without which designers are unable to adequately express their artistic intent. This article provides an overview of current terrain modeling and authoring techniques, organized according to three categories: procedural modeling, physically-based simulation of erosion and land formation processes, and example-based methods driven by scanned terrain data. We compare and contrast these techniques according to several criteria, specifically: the variety of achievable landforms; realism from both a perceptual and geomorphological perspective; issues of scale in terms of terrain extent and sampling precision; the different interaction metaphors and attendant forms of user-control, and computation and memory performance. We conclude with an in-depth discussion of possible research directions and outstanding technical and scientific challenges.