Browsing by Author "Walter, Marcelo"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Appearance Modelling of Living Human Tissues(© 2019 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2019) Nunes, Augusto L.P.; Maciel, Anderson; Meyer, Gary W.; John, Nigel W.; Baranoski, Gladimir V.G.; Walter, Marcelo; Chen, Min and Benes, BedrichThe visual fidelity of realistic renderings in Computer Graphics depends fundamentally upon how we model the appearance of objects resulting from the interaction between light and matter reaching the eye. In this paper, we survey the research addressing appearance modelling of living human tissue. Among the many classes of natural materials already researched in Computer Graphics, living human tissues such as blood and skin have recently seen an increase in attention from graphics research. There is already an incipient but substantial body of literature on this topic, but we also lack a structured review as presented here. We introduce a classification for the approaches using the four types of human tissues as classifiers. We show a growing trend of solutions that use first principles from Physics and Biology as fundamental knowledge upon which the models are built. The organic quality of visual results provided by these approaches is mainly determined by the optical properties of biophysical components interacting with light. Beyond just picture making, these models can be used in predictive simulations, with the potential for impact in many other areas.The visual fidelity of realistic renderings in Computer Graphics depends fundamentally upon how we model the appearance of objects resulting from the inter action between light and matter reaching the eye. In this paper, we survey the research addressing appearance modelling of living human tissue. Among the many classes of natural materials already researched in Computer Graphics, living human tissues such as blood and skin have recently seen an increase in attention from graphics research. There is already an incipient but substantial body of literature on this topic, but we also lack a structured review as presented here. We introduce a classification for the approaches using the four types of human tissues as classifiers. We show a growing trend of solutions that use first principles from Physics and Biology as fundamental knowledge upon which the models are built.Item A Practical Male Hair Aging Model(The Eurographics Association, 2020) Volkmann, Diego V.; Walter, Marcelo; Wilkie, Alexander and Banterle, FrancescoThe modeling and rendering of hair in Computer Graphics have seen much progress in the last few years. However, modeling and rendering hair aging, visually seen as the loss of pigments, have not attracted the same attention. We introduce in this paper a biologically inspired hair aging system with two main parts: greying of individual hairs, and time evolution of greying over the scalp. The greying of individual hairs is based on current knowledge about melanin loss, whereas the evolution on the scalp is modeled by segmenting the scalp in regions and defining distinct time frames for greying to occur. Our experimental visual results present plausible results despite the relatively simple model. We validate the results by presenting side by side our results with real pictures of men at different ages.