Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Cosker, D."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    User‐Guided Facial Animation through an Evolutionary Interface
    (© 2019 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2019) Reed, K.; Cosker, D.; Chen, Min and Benes, Bedrich
    We propose a design framework to assist with user‐generated content in facial animation — without requiring any animation experience or ground truth reference. Where conventional prototyping methods rely on handcrafting by experienced animators, our approach looks to encode the role of the animator as an Evolutionary Algorithm acting on animation controls, driven by visual feedback from a user. Presented as a simple interface, users sample control combinations and select favourable results to influence later sampling. Over multiple iterations of disregarding unfavourable control values, parameters converge towards the user's ideal. We demonstrate our framework through two non‐trivial applications: creating highly nuanced expressions by evolving control values of a face rig and non‐linear motion through evolving control point positions of animation curves.We propose a design framework to assist with user‐generated content in facial animation — without requiring any animation experience or ground truth reference. Where conventional prototyping methods rely on handcrafting by experienced animators, our approach looks to encode the role of the animator as an Evolutionary Algorithm acting on animation controls, driven by visual feedback from a user. Presented as a simple interface, users sample control combinations and select favourable results to influence later sampling. Over multiple iterations of disregarding unfavourable control values, parameters converge towards the user's ideal. We demonstrate our framework through two non‐trivial applications: creating highly nuanced expressions by evolving control values of a face rig and non‐linear motion through evolving control point positions of animation curves.

Eurographics Association © 2013-2025  |  System hosted at Graz University of Technology      
DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback