Browsing by Author "Kortylewski, Adam"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Scene-Aware 3D Multi-Human Motion Capture from a Single Camera(The Eurographics Association and John Wiley & Sons Ltd., 2023) Luvizon, Diogo C.; Habermann, Marc; Golyanik, Vladislav; Kortylewski, Adam; Theobalt, Christian; Myszkowski, Karol; Niessner, MatthiasIn this work, we consider the problem of estimating the 3D position of multiple humans in a scene as well as their body shape and articulation from a single RGB video recorded with a static camera. In contrast to expensive marker-based or multi-view systems, our lightweight setup is ideal for private users as it enables an affordable 3D motion capture that is easy to install and does not require expert knowledge. To deal with this challenging setting, we leverage recent advances in computer vision using large-scale pre-trained models for a variety of modalities, including 2D body joints, joint angles, normalized disparity maps, and human segmentation masks. Thus, we introduce the first non-linear optimization-based approach that jointly solves for the 3D position of each human, their articulated pose, their individual shapes as well as the scale of the scene. In particular, we estimate the scene depth and person scale from normalized disparity predictions using the 2D body joints and joint angles. Given the per-frame scene depth, we reconstruct a point-cloud of the static scene in 3D space. Finally, given the per-frame 3D estimates of the humans and scene point-cloud, we perform a space-time coherent optimization over the video to ensure temporal, spatial and physical plausibility. We evaluate our method on established multi-person 3D human pose benchmarks where we consistently outperform previous methods and we qualitatively demonstrate that our method is robust to in-thewild conditions including challenging scenes with people of different sizes. Code: https://github.com/dluvizon/ scene-aware-3d-multi-humanItem State of the Art in Dense Monocular Non-Rigid 3D Reconstruction(The Eurographics Association and John Wiley & Sons Ltd., 2023) Tretschk, Edith; Kairanda, Navami; B R, Mallikarjun; Dabral, Rishabh; Kortylewski, Adam; Egger, Bernhard; Habermann, Marc; Fua, Pascal; Theobalt, Christian; Golyanik, Vladislav; Bousseau, Adrien; Theobalt, Christian3D reconstruction of deformable (or non-rigid) scenes from a set of monocular 2D image observations is a long-standing and actively researched area of computer vision and graphics. It is an ill-posed inverse problem, since-without additional prior assumptions-it permits infinitely many solutions leading to accurate projection to the input 2D images. Non-rigid reconstruction is a foundational building block for downstream applications like robotics, AR/VR, or visual content creation. The key advantage of using monocular cameras is their omnipresence and availability to the end users as well as their ease of use compared to more sophisticated camera set-ups such as stereo or multi-view systems. This survey focuses on state-of-the-art methods for dense non-rigid 3D reconstruction of various deformable objects and composite scenes from monocular videos or sets of monocular views. It reviews the fundamentals of 3D reconstruction and deformation modeling from 2D image observations. We then start from general methods-that handle arbitrary scenes and make only a few prior assumptions-and proceed towards techniques making stronger assumptions about the observed objects and types of deformations (e.g. human faces, bodies, hands, and animals). A significant part of this STAR is also devoted to classification and a high-level comparison of the methods, as well as an overview of the datasets for training and evaluation of the discussed techniques. We conclude by discussing open challenges in the field and the social aspects associated with the usage of the reviewed methods.