Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • ÄŒeÅ¡tina
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • LatvieÅ¡u
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Scandolo, Leonardo"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A Practical and Efficient Approach for Correct Z-Pass Stencil Shadow Volumes
    (The Eurographics Association, 2019) Usta, Baran; Scandolo, Leonardo; Billeter, Markus; Marroquim, Ricardo; Eisemann, Elmar; Steinberger, Markus and Foley, Tim
    Shadow volumes are a popular technique to compute pixel-accurate hard shadows in 3D scenes. Many variants exist that trade off accuracy and efficiency. In this work, we present an artifact-free, efficient, and easy-to-implement stencil shadow volume method. We compare our method to established stencil shadow volume techniques and show that it outperforms the alternatives.
  • Loading...
    Thumbnail Image
    Item
    Texture Browser: Feature-based Texture Exploration
    (The Eurographics Association and John Wiley & Sons Ltd., 2021) Luo, Xuejiao; Scandolo, Leonardo; Eisemann, Elmar; Borgo, Rita and Marai, G. Elisabeta and Landesberger, Tatiana von
    Texture is a key characteristic in the definition of the physical appearance of an object and a crucial element in the creation process of 3D artists. However, retrieving a texture that matches an intended look from an image collection is difficult. Contrary to most photo collections, for which object recognition has proven quite useful, syntactic descriptions of texture characteristics is not straightforward, and even creating appropriate metadata is a very difficult task. In this paper, we propose a system to help explore large unlabeled collections of texture images. The key insight is that spatially grouping textures sharing similar features can simplify navigation. Our system uses a pre-trained convolutional neural network to extract high-level semantic image features, which are then mapped to a 2-dimensional location using an adaptation of t-SNE, a dimensionality-reduction technique. We describe an interface to visualize and explore the resulting distribution and provide a series of enhanced navigation tools, our prioritized t-SNE, scalable clustering, and multi-resolution embedding, to further facilitate exploration and retrieval tasks. Finally, we also present the results of a user evaluation that demonstrates the effectiveness of our solution.

Eurographics Association © 2013-2025  |  System hosted at Graz University of Technology      
DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback