Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Manocha, D."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    TexNN: Fast Texture Encoding Using Neural Networks
    (© 2019 The Eurographics Association and John Wiley & Sons Ltd., 2019) Pratapa, S.; Olson, T.; Chalfin, A.; Manocha, D.; Chen, Min and Benes, Bedrich
    We present a novel deep learning‐based method for fast encoding of textures into current texture compression formats. Our approach uses state‐of‐the‐art neural network methods to compute the appropriate encoding configurations for fast compression. A key bottleneck in the current encoding algorithms is the search step, and we reduce that computation to a classification problem. We use a trained neural network approximation to quickly compute the encoding configuration for a given texture. We have evaluated our approach for compressing the textures for the widely used adaptive scalable texture compression format and evaluate the performance for different block sizes corresponding to 4 × 4, 6 × 6 and 8 × 8. Overall, our method (TexNN) speeds up the encoding computation up to an order of magnitude compared to prior compression algorithms with very little or no loss in the visual quality.We present a novel deep learning‐based method for fast encoding of textures into current texture compression formats. Our approach uses state‐of‐the‐art neural network methods to compute the appropriate encoding configurations for fast compression. A key bottleneck in the current encoding algorithms is the search step, and we reduce that computation to a classification problem. We use a trained neural network approximation to quickly compute the encoding configuration for a given texture.We have evaluated our approach for compressing the textures for the widely used adaptive scalable texture compression format and evaluate the performance for different block sizes corresponding to 4 × 4, 6 × 6 and 8 × 8.

Eurographics Association © 2013-2025  |  System hosted at Graz University of Technology      
DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback