Browsing by Author "Agrawala, Maneesh"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Differentiable 3D CAD Programs for Bidirectional Editing(The Eurographics Association and John Wiley & Sons Ltd., 2022) Cascaval, Dan; Shalah, Mira; Quinn, Phillip; Bodik, Rastislav; Agrawala, Maneesh; Schulz, Adriana; Chaine, Raphaëlle; Kim, Min H.Modern CAD tools represent 3D designs not only as geometry, but also as a program composed of geometric operations, each of which depends on a set of parameters. Program representations enable meaningful and controlled shape variations via parameter changes. However, achieving desired modifications solely through parameter editing is challenging when CAD models have not been explicitly authored to expose select degrees of freedom in advance. We introduce a novel bidirectional editing system for 3D CAD programs. In addition to editing the CAD program, users can directly manipulate 3D geometry and our system infers parameter updates to keep both representations in sync. We formulate inverse edits as a set of constrained optimization objectives, returning plausible updates to program parameters that both match user intent and maintain program validity. Our approach implements an automatically differentiable domain-specific language for CAD programs, providing derivatives for this optimization to be performed quickly on any expressed program. Our system enables rapid, interactive exploration of a constrained 3D design space by allowing users to manipulate the program and geometry interchangeably during design iteration. While our approach is not designed to optimize across changes in geometric topology, we show it is expressive and performant enough for users to produce a diverse set of design variants, even when the CAD program contains a relatively large number of parameters.Item Puppet Dubbing(The Eurographics Association, 2019) Fried, Ohad; Agrawala, Maneesh; Boubekeur, Tamy and Sen, PradeepDubbing puppet videos to make the characters (e.g. Kermit the Frog) convincingly speak a new speech track is a popular activity with many examples of well-known puppets speaking lines from films or singing rap songs. But manually aligning puppet mouth movements to match a new speech track is tedious as each syllable of the speech must match a closed-open-closed segment of mouth movement for the dub to be convincing. In this work, we present two methods to align a new speech track with puppet video, one semi-automatic appearance-based and the other fully-automatic audio-based. The methods offer complementary advantages and disadvantages. Our appearance-based approach directly identifies closed-open-closed segments in the puppet video and is robust to low-quality audio as well as misalignments between the mouth movements and speech in the original performance, but requires some manual annotation. Our audio-based approach assumes the original performance matches a closed-open-closed mouth segment to each syllable of the original speech. It is fully automatic, robust to visual occlusions and fast puppet movements, but does not handle misalignments in the original performance. We compare the methods and show that both improve the credibility of the resulting video over simple baseline techniques, via quantitative evaluation and user ratings.Item State of the Art on Neural Rendering(The Eurographics Association and John Wiley & Sons Ltd., 2020) Tewari, Ayush; Fried, Ohad; Thies, Justus; Sitzmann, Vincent; Lombardi, Stephen; Sunkavalli, Kalyan; Martin-Brualla, Ricardo; Simon, Tomas; Saragih, Jason; Nießner, Matthias; Pandey, Rohit; Fanello, Sean; Wetzstein, Gordon; Zhu, Jun-Yan; Theobalt, Christian; Agrawala, Maneesh; Shechtman, Eli; Goldman, Dan B.; Zollhöfer, Michael; Mantiuk, Rafal and Sundstedt, VeronicaEfficient rendering of photo-realistic virtual worlds is a long standing effort of computer graphics. Modern graphics techniques have succeeded in synthesizing photo-realistic images from hand-crafted scene representations. However, the automatic generation of shape, materials, lighting, and other aspects of scenes remains a challenging problem that, if solved, would make photo-realistic computer graphics more widely accessible. Concurrently, progress in computer vision and machine learning have given rise to a new approach to image synthesis and editing, namely deep generative models. Neural rendering is a new and rapidly emerging field that combines generative machine learning techniques with physical knowledge from computer graphics, e.g., by the integration of differentiable rendering into network training. With a plethora of applications in computer graphics and vision, neural rendering is poised to become a new area in the graphics community, yet no survey of this emerging field exists. This state-of-the-art report summarizes the recent trends and applications of neural rendering. We focus on approaches that combine classic computer graphics techniques with deep generative models to obtain controllable and photorealistic outputs. Starting with an overview of the underlying computer graphics and machine learning concepts, we discuss critical aspects of neural rendering approaches. Specifically, our emphasis is on the type of control, i.e., how the control is provided, which parts of the pipeline are learned, explicit vs. implicit control, generalization, and stochastic vs. deterministic synthesis. The second half of this state-of-the-art report is focused on the many important use cases for the described algorithms such as novel view synthesis, semantic photo manipulation, facial and body reenactment, relighting, free-viewpoint video, and the creation of photo-realistic avatars for virtual and augmented reality telepresence. Finally, we conclude with a discussion of the social implications of such technology and investigate open research problems.Item ZoomShop: Depth-Aware Editing of Photographic Composition(The Eurographics Association and John Wiley & Sons Ltd., 2022) Liu, Sean J.; Agrawala, Maneesh; DiVerdi, Stephen; Hertzmann, Aaron; Chaine, Raphaëlle; Kim, Min H.We present ZoomShop, a photographic composition editing tool for adjusting relative size, position, and foreshortening of scene elements. Given an image and corresponding depth map as input, ZoomShop combines a novel non-linear camera model and a depth-aware image warp to reproject and deform the image. Users can isolate objects by selecting depth ranges and adjust their scale and foreshortening, which controls the paths of the camera rays through the scene. Users can also select 2D image regions and translate them, which determines the objective function in the image warp optimization. We demonstrate that ZoomShop can be used to achieve useful compositional goals, such as making a distant object more prominent while preserving foreground scenery, or making objects both larger and closer together so they still fit in the frame.