Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • ČeÅ”tina
  • Deutsch
  • EspaƱol
  • FranƧais
  • GĆ idhlig
  • LatvieÅ”u
  • Magyar
  • Nederlands
  • PortuguĆŖs
  • PortuguĆŖs do Brasil
  • Suomi
  • Svenska
  • TürkƧe
  • ŅšŠ°Š·Š°Ņ›
  • বাংলা
  • ą¤¹ą¤æą¤‚ą¤¦ą„€
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Wan, Pengfei"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Multi-Modal Face Stylization with a Generative Prior
    (The Eurographics Association and John Wiley & Sons Ltd., 2023) Li, Mengtian; Dong, Yi; Lin, Minxuan; Huang, Haibin; Wan, Pengfei; Ma, Chongyang; Chaine, Raphaƫlle; Deng, Zhigang; Kim, Min H.
    In this work, we introduce a new approach for face stylization. Despite existing methods achieving impressive results in this task, there is still room for improvement in generating high-quality artistic faces with diverse styles and accurate facial reconstruction. Our proposed framework, MMFS, supports multi-modal face stylization by leveraging the strengths of StyleGAN and integrates it into an encoder-decoder architecture. Specifically, we use the mid-resolution and high-resolution layers of StyleGAN as the decoder to generate high-quality faces, while aligning its low-resolution layer with the encoder to extract and preserve input facial details. We also introduce a two-stage training strategy, where we train the encoder in the first stage to align the feature maps with StyleGAN and enable a faithful reconstruction of input faces. In the second stage, the entire network is fine-tuned with artistic data for stylized face generation. To enable the fine-tuned model to be applied in zero-shot and one-shot stylization tasks, we train an additional mapping network from the large-scale Contrastive-Language-Image-Pre-training (CLIP) space to a latent w+ space of fine-tuned StyleGAN. Qualitative and quantitative experiments show that our framework achieves superior performance in both one-shot and zero-shot face stylization tasks, outperforming state-of-the-art methods by a large margin.

Eurographics Association Ā© 2013-2025  |  System hosted at Graz University of Technology      
DSpace software copyright Ā© 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback