Browsing by Author "Vining, Nicholas"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item LSMAT Least Squares Medial Axis Transform(© 2019 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2019) Rebain, Daniel; Angles, Baptiste; Valentin, Julien; Vining, Nicholas; Peethambaran, Jiju; Izadi, Shahram; Tagliasacchi, Andrea; Chen, Min and Benes, BedrichThe medial axis transform has applications in numerous fields including visualization, computer graphics, and computer vision. Unfortunately, traditional medial axis transformations are usually brittle in the presence of outliers, perturbations and/or noise along the boundary of objects. To overcome this limitation, we introduce a new formulation of the medial axis transform which is naturally robust in the presence of these artefacts. Unlike previous work which has approached the medial axis from a computational geometry angle, we consider it from a numerical optimization perspective. In this work, we follow the definition of the medial axis transform as ‘the set of maximally inscribed spheres’. We show how this definition can be formulated as a least squares relaxation where the transform is obtained by minimizing a continuous optimization problem. The proposed approach is inherently parallelizable by performing independent optimization of each sphere using Gauss–Newton, and its least‐squares form allows it to be significantly more robust compared to traditional computational geometry approaches. Extensive experiments on 2D and 3D objects demonstrate that our method provides superior results to the state of the art on both synthetic and real‐data.The medial axis transform has applications in numerous fields including visualization, computer graphics, and computer vision. Unfortunately, traditional medial axis transformations are usually brittle in the presence of outliers, perturbations and/or noise along the boundary of objects. To overcome this limitation, we introduce a new formulation of the medial axis transform which is naturally robust in the presence of these artefacts. Unlike previous work which has approached the medial axis from a computational geometry angle, we consider it from a numerical optimization perspective. In this work, we follow the definition of the medial axis transform as ‘the set of maximally inscribed spheres’.Item Subpixel Deblurring of Anti-Aliased Raster Clip-Art(The Eurographics Association and John Wiley & Sons Ltd., 2023) Yang, Jinfan; Vining, Nicholas; Kheradmand, Shakiba; Carr, Nathan; Sigal, Leonid; Sheffer, Alla; Myszkowski, Karol; Niessner, MatthiasArtist generated clip-art images typically consist of a small number of distinct, uniformly colored regions with clear boundaries. Legacy artist created images are often stored in low-resolution (100x100px or less) anti-aliased raster form. Compared to anti-aliasing free rasterization, anti-aliasing blurs inter-region boundaries and obscures the artist's intended region topology and color palette; at the same time, it better preserves subpixel details. Recovering the underlying artist-intended images from their low-resolution anti-aliased rasterizations can facilitate resolution independent rendering, lossless vectorization, and other image processing applications. Unfortunately, while human observers can mentally deblur these low-resolution images and reconstruct region topology, color and subpixel details, existing algorithms applicable to this task fail to produce outputs consistent with human expectations when presented with such images. We recover these viewer perceived blur-free images at subpixel resolution, producing outputs where each input pixel is replaced by four corresponding (sub)pixels. Performing this task requires computing the size of the output image color palette, generating the palette itself, and associating each pixel in the output with one of the colors in the palette. We obtain these desired output components by leveraging a combination of perceptual and domain priors, and real world data. We use readily available data to train a network that predicts, for each antialiased image, a low-blur approximation of the blur-free double-resolution outputs we seek. The images obtained at this stage are perceptually closer to the desired outputs but typically still have hundreds of redundant differently colored regions with fuzzy boundaries. We convert these low-blur intermediate images into blur-free outputs consistent with viewer expectations using a discrete partitioning procedure guided by the characteristic properties of clip-art images, observations about the antialiasing process, and human perception of anti-aliased clip-art. This step dramatically reduces the size of the output color palettes, and the region counts bringing them in line with viewer expectations and enabling the image processing applications we target. We demonstrate the utility of our method by using our outputs for a number of image processing tasks, and validate it via extensive comparisons to prior art. In our comparative study, participants preferred our deblurred outputs over those produced by the best-performing alternative by a ratio of 75 to 8.5.