Browsing by Author "Pelechano, Nuria"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Authoring Virtual Crowds: A Survey(The Eurographics Association and John Wiley & Sons Ltd., 2022) Lemonari, Marilena; Blanco, Rafael; Charalambous, Panayiotis; Pelechano, Nuria; Avraamides, Marios; Pettré, Julien; Chrysanthou, Yiorgos; Meneveaux, Daniel; Patanè, GiuseppeRecent advancements in crowd simulation unravel a wide range of functionalities for virtual agents, delivering highly-realistic, natural virtual crowds. Such systems are of particular importance to a variety of applications in fields such as: entertainment (e.g., movies, computer games); architectural and urban planning; and simulations for sports and training. However, providing their capabilities to untrained users necessitates the development of authoring frameworks. Authoring virtual crowds is a complex and multi-level task, varying from assuming control and assisting users to realise their creative intents, to delivering intuitive and easy to use interfaces, facilitating such control. In this paper, we present a categorisation of the authorable crowd simulation components, ranging from high-level behaviours and path-planning to local movements, as well as animation and visualisation. We provide a review of the most relevant methods in each area, emphasising the amount and nature of influence that the users have over the final result. Moreover, we discuss the currently available authoring tools (e.g., graphical user interfaces, drag-and-drop), identifying the trends of early and recent work. Finally, we suggest promising directions for future research that mainly stem from the rise of learning-based methods, and the need for a unified authoring framework.Item AvatarGo: Plug and Play self-avatars for VR(The Eurographics Association, 2022) Ponton, Jose Luis; Monclús, Eva; Pelechano, Nuria; Pelechano, Nuria; Vanderhaeghe, DavidThe use of self-avatars in a VR application can enhance presence and embodiment which leads to a better user experience. In collaborative VR it also facilitates non-verbal communication. Currently it is possible to track a few body parts with cheap trackers and then apply IK methods to animate a character. However, the correspondence between trackers and avatar joints is typically fixed ad-hoc, which is enough to animate the avatar, but causes noticeable mismatches between the user's body pose and the avatar. In this paper we present a fast and easy to set up system to compute exact offset values, unique for each user, which leads to improvements in avatar movement. Our user study shows that the Sense of Embodiment increased significantly when using exact offsets as opposed to fixed ones. We also allowed the users to see a semitransparent avatar overlaid with their real body to objectively evaluate the quality of the avatar movement with our technique.Item CEIG 2017 - Spanish Computer Graphics Conference: Frontmatter(Eurographics Association, 2017) Melero, Fco. Javier; Pelechano, Nuria; Fco. Javier Melero and Nuria PelechanoItem Combining Motion Matching and Orientation Prediction to Animate Avatars for Consumer-Grade VR Devices(The Eurographics Association and John Wiley & Sons Ltd., 2022) Ponton, Jose Luis; Yun, Haoran; Andujar, Carlos; Pelechano, Nuria; Dominik L. Michels; Soeren PirkThe animation of user avatars plays a crucial role in conveying their pose, gestures, and relative distances to virtual objects or other users. Self-avatar animation in immersive VR helps improve the user experience and provides a Sense of Embodiment. However, consumer-grade VR devices typically include at most three trackers, one at the Head Mounted Display (HMD), and two at the handheld VR controllers. Since the problem of reconstructing the user pose from such sparse data is ill-defined, especially for the lower body, the approach adopted by most VR games consists of assuming the body orientation matches that of the HMD, and applying animation blending and time-warping from a reduced set of animations. Unfortunately, this approach produces noticeable mismatches between user and avatar movements. In this work we present a new approach to animate user avatars that is suitable for current mainstream VR devices. First, we use a neural network to estimate the user's body orientation based on the tracking information from the HMD and the hand controllers. Then we use this orientation together with the velocity and rotation of the HMD to build a feature vector that feeds a Motion Matching algorithm. We built a MoCap database with animations of VR users wearing a HMD and used it to test our approach on both self-avatars and other users' avatars. Our results show that our system can provide a large variety of lower body animations while correctly matching the user orientation, which in turn allows us to represent not only forward movements but also stepping in any direction.Item EUROGRAPHICS 2022: Short Papers Frontmatter(The Eurographics Association, 2022) Pelechano, Nuria; Vanderhaeghe, David; Pelechano, Nuria; Vanderhaeghe, DavidItem IMET 2023: Frontmatter(The Eurographics Association, 2023) Pelechano, Nuria; Liarokapis, Fotis; Rohmer, Damien; Asadipour, Ali; Pelechano, Nuria; Liarokapis, Fotis; Rohmer, Damien; Asadipour, AliItem VR-assisted Architectural Design in a Heritage Site: the Sagrada Família Case Study(The Eurographics Association, 2018) Andujar, Carlos; Brunet, Pere; Buxareu, Jerónimo; Fons, Joan; Laguarda, Narcís; Pascual, Jordi; Pelechano, Nuria; Sablatnig, Robert and Wimmer, MichaelVirtual Reality (VR) simulations have long been proposed to allow users to explore both yet-to-built buildings in architectural design, and ancient, remote or disappeared buildings in cultural heritage. In this paper we describe an on-going VR project on an UNESCO World Heritage Site that simultaneously addresses both scenarios: supporting architects in the task of designing the remaining parts of a large unfinished building, and simulating existing parts that define the environment that new designs must conform to. The main challenge for the team of architects is to advance towards the project completion being faithful to the original Gaudí's project, since many plans, drawings and plaster models were lost. We analyze the main requirements for collaborative architectural design in such a unique scenario, describe the main technical challenges, and discuss the lessons learned after one year of use of the system.