Browsing by Author "Sbardellati, Maximilian"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Honeycomb Plots: Visual Enhancements for Hexagonal Maps(The Eurographics Association, 2022) Trautner, Thomas; Sbardellati, Maximilian; Stoppel, Sergej; Bruckner, Stefan; Bender, Jan; Botsch, Mario; Keim, Daniel A.Aggregation through binning is a commonly used technique for visualizing large, dense, and overplotted two-dimensional data sets. However, aggregation can hide nuanced data-distribution features and complicates the display of multiple data-dependent variables, since color mapping is the primary means of encoding. In this paper, we present novel techniques for enhancing hexplots with spatialization cues while avoiding common disadvantages of three-dimensional visualizations. In particular, we focus on techniques relying on preattentive features that exploit shading and shape cues to emphasize relative value differences. Furthermore, we introduce a novel visual encoding that conveys information about the data distributions or trends within individual tiles. Based on multiple usage examples from different domains and real-world scenarios, we generate expressive visualizations that increase the information content of classic hexplots and validate their effectiveness in a user study.Item Interactive Exploded Views for Molecular Structures(The Eurographics Association, 2019) Sbardellati, Maximilian; Miao, Haichao; WU, Hsiang-Yun; Groeller, Eduard; Barisic, Ivan; Viola, Ivan; Kozlíková, Barbora and Linsen, Lars and Vázquez, Pere-Pau and Lawonn, Kai and Raidou, Renata GeorgiaWe propose an approach to interactively create exploded views of molecular structures with the goal to help domain experts in their design process and provide them with a meaningful visual representation of component relationships. Exploded views are excellently suited to manage visual occlusion of structure components, which is one of the main challenges when visualizing complex 3D data. In this paper, we discuss four key parameters of an exploded view: explosion distance, direction, order, and the selection of explosion components. We propose two strategies, namely the structure-derived exploded view and the interactive free-form exploded view, for computing these four parameters systematically. The first strategy allows scientists to automatically create exploded views by computing the parameters from the given object structures. The second strategy further supports them to design and customize detailed explosion paths through user interaction. Our approach features the possibility to animate exploded views, to incorporate ease functions into these animations and to display the explosion path of components via arrows. Finally, we demonstrate three use cases with various challenges that we investigated in collaboration with a domain scientist. Our approach, therefore, provides interesting new ways of investigating and presenting the design layout and composition of complex molecular structures.