Browsing by Author "Saalfeld, Patrick"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Learning Hand Anatomy with Sense of Embodiment(The Eurographics Association, 2020) Saalfeld, Patrick; Albrecht, Aylin; D'Hanis, Wolfgang; Rothkötter, Hermann-Josef; Preim, Bernhard; Kozlíková, Barbora and Krone, Michael and Smit, Noeska and Nieselt, Kay and Raidou, Renata GeorgiaWe present a VR-based prototype for learning the hand anatomy. The prototype is designed to support embodied cognition, i.e., a learning process based on movements. The learner employs the prototype in VR by moving their own hand and fingers and observing how the virtual anatomical hand model mirrors this movement. The display of anatomical systems and their names can be adjusted. The prototype is deployed on the Oculus Quest and uses its native hand tracking capabilities to obtain the hand posture of the user. The potential of the prototype is shown with a small user study.Item Student and Teacher Meet in a Shared Virtual Reality: A one-on-one Tutoring System for Anatomy Education(The Eurographics Association, 2020) Saalfeld, Patrick; Schmeier, Anna; D'Hanis, Wolfgang; Rothkötter, Hermann-Josef; Preim, Bernhard; Kozlíková, Barbora and Krone, Michael and Smit, Noeska and Nieselt, Kay and Raidou, Renata GeorgiaWe introduce a Virtual Reality (VR) one-on-one tutoring system to support anatomy education. A student uses a fully immersive VR headset to explore the anatomy of the base of the human skull. A teacher guides the student by using the semi-immersive zSpace. Both systems are connected via network and each action is synchronized between both systems. The teacher is provided with various features to direct the student through the immersive learning experience. The teacher can influence the student's navigation or provide annotations on the fly and hereby improve the student's learning experience.Item The Virtual Reality Flow Lens for Blood Flow Exploration(The Eurographics Association, 2020) Behrendt, Benjamin; Piotrowski, Lisa; Saalfeld, Sylvia; Preim, Bernhard; Saalfeld, Patrick; Kozlíková, Barbora and Krone, Michael and Smit, Noeska and Nieselt, Kay and Raidou, Renata GeorgiaThe exploration of time-dependent measured or simulated blood flow is challenging due to the complex three-dimensional structure of vessels and blood flow patterns. Especially on a 2D screen, understanding their full shape and interacting with them is difficult. Critical regions do not always stand out in the visualization and may easily be missed without proper interaction and filtering techniques. The FlowLens [GNBP11] was introduced as a focus-and-context technique to explore one specific blood flow parameter in the context of other parameters for the purpose of treatment planning. With the recent availability of affordable VR glasses it is possible to adapt the concepts of the FlowLens into immersive VR and make them available to a broader group of users. Translating the concept of the Flow Lens to VR leads to a number of design decisions not only based around what functions to include, but also how they can be made available to the user. In this paper, we present a configurable focus-and-context visualization for the use with virtual reality headsets and controllers that allows users to freely explore blood flow data within a VR environment. The advantage of such a solution is the improved perception of the complex spatial structures that results from being surrounded by them instead of observing through a small screen.Item VR Acrophobia Treatment - Development of Customizable Acrophobia Inducing Scenarios(The Eurographics Association, 2020) Wagner, Sebastian; Illner, Kay; Weber, Matthias; Preim, Bernhard; Saalfeld, Patrick; Kozlíková, Barbora and Krone, Michael and Smit, Noeska and Nieselt, Kay and Raidou, Renata GeorgiaSpecific phobias are among the most common mental diseases, affecting the lives of millions of people. Yet, many cases remain untreated and even undiagnosed, partly due to entry barriers such as waiting times and inconvenience of therapy. To improve the therapeutic options and convenience for the treatment of specific phobias, we implemented a virtual reality application for treating acrophobia (fear of heights) with in-virtuo exposure therapy. Our concept is based on principles from psychology and interaction design. This concept is then implemented using the game engine Unity and Oculus Rift headset as a target device for VR display. Our application has a wide range of customization options, which enables it to be personalized to individual patients. In addition, a number of motivational methods are integrated, which are intended to increase patient motivation, as motivation is essential for a successful therapy.