Browsing by Author "Sunkavalli, Kalyan"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Semi‐Procedural Convolutional Material Prior(© 2023 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2023) Zhou, Xilong; Hašan, Miloš; Deschaintre, Valentin; Guerrero, Paul; Sunkavalli, Kalyan; Kalantari, Nima Khademi; Hauser, Helwig and Alliez, PierreLightweight material capture methods require a material prior, defining the subspace of plausible textures within the large space of unconstrained texel grids. Previous work has either used deep neural networks (trained on large synthetic material datasets) or procedural node graphs (constructed by expert artists) as such priors. In this paper, we propose a semi‐procedural differentiable material prior that represents materials as a set of (typically procedural) grayscale noises and patterns that are processed by a sequence of lightweight learnable convolutional filter operations. We demonstrate that the restricted structure of this architecture acts as an inductive bias on the space of material appearances, allowing us to optimize the weights of the convolutions per‐material, with no need for pre‐training on a large dataset. Combined with a differentiable rendering step and a perceptual loss, we enable single‐image tileable material capture comparable with state of the art. Our approach does not target the pixel‐perfect recovery of the material, but rather uses noises and patterns as input to match the target appearance. To achieve this, it does not require complex procedural graphs, and has a much lower complexity, computational cost and storage cost. We also enable control over the results, through changing the provided patterns and using guide maps to push the material properties towards a user‐driven objective.Item State of the Art on Neural Rendering(The Eurographics Association and John Wiley & Sons Ltd., 2020) Tewari, Ayush; Fried, Ohad; Thies, Justus; Sitzmann, Vincent; Lombardi, Stephen; Sunkavalli, Kalyan; Martin-Brualla, Ricardo; Simon, Tomas; Saragih, Jason; Nießner, Matthias; Pandey, Rohit; Fanello, Sean; Wetzstein, Gordon; Zhu, Jun-Yan; Theobalt, Christian; Agrawala, Maneesh; Shechtman, Eli; Goldman, Dan B.; Zollhöfer, Michael; Mantiuk, Rafal and Sundstedt, VeronicaEfficient rendering of photo-realistic virtual worlds is a long standing effort of computer graphics. Modern graphics techniques have succeeded in synthesizing photo-realistic images from hand-crafted scene representations. However, the automatic generation of shape, materials, lighting, and other aspects of scenes remains a challenging problem that, if solved, would make photo-realistic computer graphics more widely accessible. Concurrently, progress in computer vision and machine learning have given rise to a new approach to image synthesis and editing, namely deep generative models. Neural rendering is a new and rapidly emerging field that combines generative machine learning techniques with physical knowledge from computer graphics, e.g., by the integration of differentiable rendering into network training. With a plethora of applications in computer graphics and vision, neural rendering is poised to become a new area in the graphics community, yet no survey of this emerging field exists. This state-of-the-art report summarizes the recent trends and applications of neural rendering. We focus on approaches that combine classic computer graphics techniques with deep generative models to obtain controllable and photorealistic outputs. Starting with an overview of the underlying computer graphics and machine learning concepts, we discuss critical aspects of neural rendering approaches. Specifically, our emphasis is on the type of control, i.e., how the control is provided, which parts of the pipeline are learned, explicit vs. implicit control, generalization, and stochastic vs. deterministic synthesis. The second half of this state-of-the-art report is focused on the many important use cases for the described algorithms such as novel view synthesis, semantic photo manipulation, facial and body reenactment, relighting, free-viewpoint video, and the creation of photo-realistic avatars for virtual and augmented reality telepresence. Finally, we conclude with a discussion of the social implications of such technology and investigate open research problems.