Browsing by Author "Jeon, Junho"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Semantic Reconstruction: Reconstruction of Semantically Segmented 3D Meshes via Volumetric Semantic Fusion(The Eurographics Association and John Wiley & Sons Ltd., 2018) Jeon, Junho; Jung, Jinwoong; Kim, Jungeon; Lee, Seungyong; Fu, Hongbo and Ghosh, Abhijeet and Kopf, JohannesSemantic segmentation partitions a given image or 3D model of a scene into semantically meaning parts and assigns predetermined labels to the parts. With well-established datasets, deep networks have been successfully used for semantic segmentation of RGB and RGB-D images. On the other hand, due to the lack of annotated large-scale 3D datasets, semantic segmentation for 3D scenes has not yet been much addressed with deep learning. In this paper, we present a novel framework for generating semantically segmented triangular meshes of reconstructed 3D indoor scenes using volumetric semantic fusion in the reconstruction process. Our method integrates the results of CNN-based 2D semantic segmentation that is applied to the RGB-D stream used for dense surface reconstruction. To reduce the artifacts from noise and uncertainty of single-view semantic segmentation, we introduce adaptive integration for the volumetric semantic fusion and CRF-based semantic label regularization. With these methods, our framework can easily generate a high-quality triangular mesh of the reconstructed 3D scene with dense (i.e., per-vertex) semantic labels. Extensive experiments demonstrate that our semantic segmentation results of 3D scenes achieves the state-of-the-art performance compared to the previous voxel-based and point cloud-based methods.Item Structure‐Texture Decomposition of Images with Interval Gradient(© 2017 The Eurographics Association and John Wiley & Sons Ltd., 2017) Lee, Hyunjoon; Jeon, Junho; Kim, Junho; Lee, Seungyong; Chen, Min and Zhang, Hao (Richard)This paper presents a novel filtering‐based method for decomposing an image into structures and textures. Unlike previous filtering algorithms, our method adaptively smooths image gradients to filter out textures from images. A new gradient operator, the interval gradient, is proposed for adaptive gradient smoothing. Using interval gradients, textures can be distinguished from structure edges and smoothly varying shadings. We also propose an effective gradient‐guided algorithm to produce high‐quality image filtering results from filtered gradients. Our method avoids gradient reversal in the filtering results and preserves sharp features better than existing filtering approaches, while retaining simplicity and highly parallel implementation. The proposed method can be utilized for various applications that require accurate structure‐texture decomposition of images.This paper presents a novel filtering‐based method for decomposing an image into structures and textures. Unlike previous filtering algorithms, our method adaptively smooths image gradients to filter out textures from images. A new gradient operator, the interval gradient, is proposed for adaptive gradient smoothing. Using interval gradients, textures can be distinguished from structure edges and smoothly varying shadings. We also propose an effective gradient‐guided algorithm to produce high‐quality image filtering results from filtered gradients. Our method avoids gradient reversal in the filtering results and preserves sharp features better than existing filtering approaches, while retaining simplicity and highly parallel implementation.