Browsing by Author "Sheng, Bin"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Biorthogonal Wavelet Surface Reconstruction Using Partial Integrations(The Eurographics Association and John Wiley & Sons Ltd., 2018) Ren, Xiaohua; Lyu, Luan; He, Xiaowei; Cao, Wei; Yang, Zhixin; Sheng, Bin; Zhang, Yanci; Wu, Enhua; Fu, Hongbo and Ghosh, Abhijeet and Kopf, JohannesWe introduce a new biorthogonal wavelet approach to creating a water-tight surface defined by an implicit function, from a finite set of oriented points. Our approach aims at addressing problems with previous wavelet methods which are not resilient to missing or nonuniformly sampled data. To address the problems, our approach has two key elements. First, by applying a three-dimensional partial integration, we derive a new integral formula to compute the wavelet coefficients without requiring the implicit function to be an indicator function. It can be shown that the previously used formula is a special case of our formula when the integrated function is an indicator function. Second, a simple yet general method is proposed to construct smooth wavelets with small support. With our method, a family of wavelets can be constructed with the same support size as previously used wavelets while having one more degree of continuity. Experiments show that our approach can robustly produce results comparable to those produced by the Fourier and Poisson methods, regardless of the input data being noisy, missing or nonuniform. Moreover, our approach does not need to compute global integrals or solve large linear systems.Item InspireMePosing: Learn Pose and Composition from Portrait Examples(The Eurographics Association, 2018) Sheng, Bin; Jin, Yuxi; Li, Ping; Wang, Wenxiao; Fu, Hongbo; Wu, Enhua; Fu, Hongbo and Ghosh, Abhijeet and Kopf, JohannesSince people tend to build relationship with others by personal photography, capturing high quality photographs on mobile device has become a strong demand. We propose a portrait photography guidance system to guide user's photographing. We consider current scene image as our input and find professional photograph examples with similar aesthetic features for it. Deep residual network is introduced to gather scene classification information and represent common photograph rules by features, and random forest is adopted to establishing mapping relations between extracted features and examples. Besides, we implement our guidance system on a camera application and evaluate it by user study.