Browsing by Author "Haldorsen, Ingfrid S."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item MuSIC: Multi-Sequential Interactive Co-Registration for Cancer Imaging Data based on Segmentation Masks(The Eurographics Association, 2022) Eichner, Tanja; Mörth, Eric; Wagner-Larsen, Kari S.; Lura, Njål; Haldorsen, Ingfrid S.; Gröller, Eduard; Bruckner, Stefan; Smit, Noeska N.; Renata G. Raidou; Björn Sommer; Torsten W. Kuhlen; Michael Krone; Thomas Schultz; Hsiang-Yun WuIn gynecologic cancer imaging, multiple magnetic resonance imaging (MRI) sequences are acquired per patient to reveal different tissue characteristics. However, after image acquisition, the anatomical structures can be misaligned in the various sequences due to changing patient location in the scanner and organ movements. The co-registration process aims to align the sequences to allow for multi-sequential tumor imaging analysis. However, automatic co-registration often leads to unsatisfying results. To address this problem, we propose the web-based application MuSIC (Multi-Sequential Interactive Co-registration). The approach allows medical experts to co-register multiple sequences simultaneously based on a pre-defined segmentation mask generated for one of the sequences. Our contributions lie in our proposed workflow. First, a shape matching algorithm based on dual annealing searches for the tumor position in each sequence. The user can then interactively adapt the proposed segmentation positions if needed. During this procedure, we include a multi-modal magic lens visualization for visual quality assessment. Then, we register the volumes based on the segmentation mask positions. We allow for both rigid and deformable registration. Finally, we conducted a usability analysis with seven medical and machine learning experts to verify the utility of our approach. Our participants highly appreciate the multi-sequential setup and see themselves using MuSIC in the future.Item RadEx: Integrated Visual Exploration of Multiparametric Studies for Radiomic Tumor Profiling(The Eurographics Association and John Wiley & Sons Ltd., 2020) Mörth, Eric; Wagner-Larsen, Kari; Hodneland, Erlend; Krakstad, Camilla; Haldorsen, Ingfrid S.; Bruckner, Stefan; Smit, Noeska N.; Eisemann, Elmar and Jacobson, Alec and Zhang, Fang-LueBetter understanding of the complex processes driving tumor growth and metastases is critical for developing targeted treatment strategies in cancer. Radiomics extracts large amounts of features from medical images which enables radiomic tumor profiling in combination with clinical markers. However, analyzing complex imaging data in combination with clinical data is not trivial and supporting tools aiding in these exploratory analyses are presently missing. In this paper, we present an approach that aims to enable the analysis of multiparametric medical imaging data in combination with numerical, ordinal, and categorical clinical parameters to validate established and unravel novel biomarkers. We propose a hybrid approach where dimensionality reduction to a single axis is combined with multiple linked views allowing clinical experts to formulate hypotheses based on all available imaging data and clinical parameters. This may help to reveal novel tumor characteristics in relation to molecular targets for treatment, thus providing better tools for enabling more personalized targeted treatment strategies. To confirm the utility of our approach, we closely collaborate with experts from the field of gynecological cancer imaging and conducted an evaluation with six experts in this field.