Browsing by Author "Georgii, Joachim"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Using Position-Based Dynamics for Simulating the Mitral Valve in a Decision Support System(The Eurographics Association, 2019) Walczak, Lars; Georgii, Joachim; Tautz, Lennart; Neugebauer, Mathias; Wamala, Isaac; Sündermann, Simon; Falk, Volkmar; Hennemuth, Anja; Kozlíková, Barbora and Linsen, Lars and Vázquez, Pere-Pau and Lawonn, Kai and Raidou, Renata GeorgiaIn mitral valve interventions, surgeons have to select an optimal combination of techniques for every patient. Especially less experienced physicians would benefit from decision support for this process. To support the visual analysis of the patientspecific valvular dynamics and an in-silico pre-intervention simulation of different therapy options, a real-time simulation of the mitral valve is needed, especially for the use in a time-constrained clinical environment. We develop a simplified model of the mitral valve and propose a novel approach to simulate the mitral valve with position-based dynamics. As input, a mesh representation of the open-state mitral valve, two polygons representing the open and closed annulus states, simplified chordae tendineae, and a set of forces for approximating the surrounding blood are required. The mitral valve model can be deformed to simulate the closing and opening as well as incorporate changes caused by virtual interventions in the simulation. For evaluation, ten mitral valves were reconstructed from transesophageal echocardiogram sequences of patients with normal and abnormal physiology. Experts in cardiac surgery annotated anatomical landmarks for valve reconstruction. The simulation results for closing the valve were qualitatively compared to the anatomy depicted in the image sequences and, if present, the reproduction of a prolapse was verified. In addition, two virtual interventions (annuloplasty and clipping) were performed for one case and provided new insights about changes in valve closure and orifice area after modification. Each simulation ran at interactive frame rates. Our approach enables an efficient simulation of the mitral valve with normal and abnormal valve closing behavior as well as virtual interventions. The simulation results showed good agreements with the image data in general and reproduced valve closure in all cases. In three cases, prolapse was not or not correctly reproduced. Further research is needed to parameterize the model in pathologic cases.Item Using Position‐Based Dynamics for Simulating Mitral Valve Closure and Repair Procedures(© 2022 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2022) Walczak, Lars; Georgii, Joachim; Tautz, Lennart; Neugebauer, Mathias; Wamala, Isaac; Sündermann, Simon; Falk, Volkmar; Hennemuth, Anja; Hauser, Helwig and Alliez, PierreTo achieve the best treatment of mitral valve disease in a patient, surgeons aim to optimally combine complementary surgical techniques. Image‐based simulation as well as visualization of the mitral valve dynamics can support the visual analysis of the patient‐specific valvular dynamics and enable an exploration of different therapy options. The usage in a time‐constrained clinical environment requires a mitral valve model that is cost‐effective, easy to set up, parameterize and evaluate. Working towards this goal, we develop a simplified model of the mitral valve and analyse its applicability for the sketched use‐case. We propose a novel approach to simulate the mitral valve with position‐based dynamics. The resulting mitral valve model can be deformed to simulate the closing and opening, and incorporate changes caused by virtual interventions in the simulation. Ten mitral valves were reconstructed from transesophageal echocardiogram sequences of patients with normal and abnormal physiology for evaluation. Simulation results showed good agreements with expert annotations of the original image data and reproduced valve closure in all cases. In four of five pathological cases, abnormal closing behaviour was correctly reproduced. In future research, we aim to improve the parameterization of the model in terms of biomechanical correctness and perform a more extensive validation.