Browsing by Author "Pitzalis, Luca"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item The Py3DViewer Project: A Python Library for fast Prototyping in Geometry Processing(The Eurographics Association, 2019) Cherchi, Gianmarco; Pitzalis, Luca; Frongia, Giovanni Laerte; Scateni, Riccardo; Agus, Marco and Corsini, Massimiliano and Pintus, RuggeroFast research and prototyping, nowadays, is shifting towards languages that allow interactive execution and quick changes. Python is very widely used for rapid prototyping. We introduce Py3DViewer, a new Python library that allows researchers to quickly prototype geometry processing algorithms by interactively editing and viewing meshes. Polygonal and polyhedral meshes are both supported. The library is designed to be used in conjunction with Jupyter environments, which allow interactive Python code execution and data visualization in a browser, thus opening up the possibility of viewing a mesh while editing the underlying geometry and topology.Item Working with Volumetric Meshes in a Game Engine: a Unity Prototype(The Eurographics Association, 2020) Pitzalis, Luca; Cherchi, Gianmarco; Scateni, Riccardo; Spano, Lucio Davide; Biasotti, Silvia and Pintus, Ruggero and Berretti, StefanoVolumetric meshes are useful assets in many different research and application fields, like physical simulations, FEM or IGA. In the last decade, the Computer Graphics community dedicated a lot of effort in studying and developing new algorithms for the creation, manipulation, and visualization of this family of meshes. In the meantime, Game Development became a relevant field of application for CG practitioners entangled with AR and VR techniques. In this work, we position ourselves at the confluence of these two broad research and development paths. We introduce a custom data structure aiming at using volumetric meshes in Unity. To this purpose, we combine gaming techniques and interactions with typical operations of volumetric meshes. Besides this, to make the researcher experience more realistic, we also introduce features to manipulate volumetric meshes for their projects in an immersive environment using VR techniques. We think this feature can be useful in developing tools for 3D Sculpting or Digital Fabrication.