Browsing by Author "Cao, Ruizhi"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item InstanceFusion: Real-time Instance-level 3D Reconstruction Using a Single RGBD Camera(The Eurographics Association and John Wiley & Sons Ltd., 2020) Lu, Feixiang; Peng, Haotian; Wu, Hongyu; Yang, Jun; Yang, Xinhang; Cao, Ruizhi; Zhang, Liangjun; Yang, Ruigang; Zhou, Bin; Eisemann, Elmar and Jacobson, Alec and Zhang, Fang-LueWe present InstanceFusion, a robust real-time system to detect, segment, and reconstruct instance-level 3D objects of indoor scenes with a hand-held RGBD camera. It combines the strengths of deep learning and traditional SLAM techniques to produce visually compelling 3D semantic models. The key success comes from our novel segmentation scheme and the efficient instancelevel data fusion, which are both implemented on GPU. Specifically, for each incoming RGBD frame, we take the advantages of the RGBD features, the 3D point cloud, and the reconstructed model to perform instance-level segmentation. The corresponding RGBD data along with the instance ID are then fused to the surfel-based models. In order to sufficiently store and update these data, we design and implement a new data structure using the OpenGL Shading Language. Experimental results show that our method advances the state-of-the-art (SOTA) methods in instance segmentation and data fusion by a big margin. In addition, our instance segmentation improves the precision of 3D reconstruction, especially in the loop closure. InstanceFusion system runs 20.5Hz on a consumer-level GPU, which supports a number of augmented reality (AR) applications (e.g., 3D model registration, virtual interaction, AR map) and robot applications (e.g., navigation, manipulation, grasping). To facilitate future research and reproduce our system more easily, the source code, data, and the trained model are released on Github: https://github.com/Fancomi2017/InstanceFusion.Item Line Art Colorization Based on Explicit Region Segmentation(The Eurographics Association and John Wiley & Sons Ltd., 2021) Cao, Ruizhi; Mo, Haoran; Gao, Chengying; Zhang, Fang-Lue and Eisemann, Elmar and Singh, KaranAutomatic line art colorization plays an important role in anime and comic industry. While existing methods for line art colorization are able to generate plausible colorized results, they tend to suffer from the color bleeding issue. We introduce an explicit segmentation fusion mechanism to aid colorization frameworks in avoiding color bleeding artifacts. This mechanism is able to provide region segmentation information for the colorization process explicitly so that the colorization model can learn to avoid assigning the same color across regions with different semantics or inconsistent colors inside an individual region. The proposed mechanism is designed in a plug-and-play manner, so it can be applied to a diversity of line art colorization frameworks with various kinds of user guidances. We evaluate this mechanism in tag-based and referencebased line art colorization tasks by incorporating it into the state-of-the-art models. Comparisons with these existing models corroborate the effectiveness of our method which largely alleviates the color bleeding artifacts. The code is available at https://github.com/Ricardo-L-C/ColorizationWithRegion.