Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Sun, Haoran"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Efficient Texture Parameterization Driven by Perceptual-Loss-on-Screen
    (The Eurographics Association and John Wiley & Sons Ltd., 2022) Sun, Haoran; Wang, Shiyi; Wu, Wenhai; Jin, Yao; Bao, Hujun; Huang, Jin; Umetani, Nobuyuki; Wojtan, Chris; Vouga, Etienne
    Texture mapping is a ubiquitous technique to enrich the visual effect of a mesh, which represents the desired signal (e.g. diffuse color) on the mesh to a texture image discretized by pixels through a bijective parameterization. To achieve high visual quality, large number of pixels are generally required, which brings big burden in storage, memory and transmission. We propose to use a perceptual model and a rendering procedure to measure the loss coming from the discretization, then optimize a parameterization to improve the efficiency, i.e. using fewer pixels under a comparable perceptual loss. The general perceptual model and rendering procedure can be very complicated, and non-isotropic property rooted in the square shape of pixels make the problem more difficult to solve. We adopt a two-stage strategy and use the Bayesian optimization in the triangle-wise stage. With our carefully designed weighting scheme, the mesh-wise optimization can take the triangle-wise perceptual loss into consideration under a global conforming requirement. Comparing with many parameterizations manually designed, driven by interpolation error, or driven by isotropic energy, ours can use significantly fewer pixels with comparable perception loss or vise vesa.

Eurographics Association © 2013-2025  |  System hosted at Graz University of Technology      
DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback