Browsing by Author "Blat, Josep"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Dynamic Combination of Crowd Steering Policies Based on Context(The Eurographics Association and John Wiley & Sons Ltd., 2022) Cabrero-Daniel, Beatriz; Marques, Ricardo; Hoyet, Ludovic; Pettré, Julien; Blat, Josep; Chaine, Raphaëlle; Kim, Min H.Simulating crowds requires controlling a very large number of trajectories of characters and is usually performed using crowd steering algorithms. The question of choosing the right algorithm with the right parameter values is of crucial importance given the large impact on the quality of results. In this paper, we study the performance of a number of steering policies (i.e., simulation algorithm and its parameters) in a variety of contexts, resorting to an existing quality function able to automatically evaluate simulation results. This analysis allows us to map contexts to the performance of steering policies. Based on this mapping, we demonstrate that distributing the best performing policies among characters improves the resulting simulations. Furthermore, we also propose a solution to dynamically adjust the policies, for each agent independently and while the simulation is running, based on the local context each agent is currently in. We demonstrate significant improvements of simulation results compared to previous work that would optimize parameters once for the whole simulation, or pick an optimized, but unique and static, policy for a given global simulation context.Item A Perceptually-Validated Metric for Crowd Trajectory Quality Evaluation(ACM, 2021) Daniel, Beatriz Cabrero; Marques, Ricardo; Hoyet, Ludovic; Pettré, Julien; Blat, Josep; Narain, Rahul and Neff, Michael and Zordan, VictorSimulating crowds requires controlling a very large number of trajectories and is usually performed using crowd motion algorithms for which appropriate parameter values need to be found. The study of the relation between parametric values for simulation techniques and the quality of the resulting trajectories has been studied either through perceptual experiments or by comparison with real crowd trajectories. In this paper, we integrate both strategies. A quality metric, QF, is proposed to abstract from reference data while capturing the most salient features that affect the perception of trajectory realism. QF weights and combines cost functions that are based on several individual, local and global properties of trajectories. These trajectory features are selected from the literature and from interviews with experts. To validate the capacity of QF to capture perceived trajectory quality, we conduct an online experiment that demonstrates the high agreement between the automatic quality score and non-expert users. To further demonstrate the usefulness of QF , we use it in a data-free parameter tuning application able to tune any parametric microscopic crowd simulation model that outputs independent trajectories for characters. The learnt parameters for the tuned crowd motion model maintain the influence of the reference data which was used to weight the terms of QF.