Browsing by Author "Maisch, Sebastian"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Deep-learning the Latent Space of Light Transport(The Eurographics Association and John Wiley & Sons Ltd., 2019) Hermosilla, Pedro; Maisch, Sebastian; Ritschel, Tobias; Ropinski, Timo; Boubekeur, Tamy and Sen, PradeepWe suggest a method to directly deep-learn light transport, i. e., the mapping from a 3D geometry-illumination-material configuration to a shaded 2D image. While many previous learning methods have employed 2D convolutional neural networks applied to images, we show for the first time that light transport can be learned directly in 3D. The benefit of 3D over 2D is, that the former can also correctly capture illumination effects related to occluded and/or semi-transparent geometry. To learn 3D light transport, we represent the 3D scene as an unstructured 3D point cloud, which is later, during rendering, projected to the 2D output image. Thus, we suggest a two-stage operator comprising a 3D network that first transforms the point cloud into a latent representation, which is later on projected to the 2D output image using a dedicated 3D-2D network in a second step. We will show that our approach results in improved quality in terms of temporal coherence while retaining most of the computational efficiency of common 2D methods. As a consequence, the proposed two stage-operator serves as a valuable extension to modern deferred shading approaches.Item Improving Perception of Molecular Surface Visualizations by Incorporating Translucency Effects(The Eurographics Association, 2018) Hermosilla, Pedro; Maisch, Sebastian; Vázquez, Pere-Pau; Ropinski, Timo; Puig Puig, Anna and Schultz, Thomas and Vilanova, Anna and Hotz, Ingrid and Kozlikova, Barbora and Vázquez, Pere-PauMolecular surfaces are a commonly used representation in the analysis of molecular structures as they provide a compact description of the space occupied by a molecule and its accessibility. However, due to the high abstraction of the atomic data, fine grain features are hard to identify. Moreover, these representations involve a high degree of occlusions, which prevents the identification of internal features and potentially impacts shape perception. In this paper, we present a set of techniques which are inspired by the properties of translucent materials, that have been developed to improve the perception of molecular surfaces: First, we introduce an interactive algorithm to simulate subsurface scattering for molecular surfaces, in order to improve the thickness perception of the molecule. Second, we present a technique to visualize structures just beneath the surface, by still conveying relevant depth information. And lastly, we introduce reflections and refractions into our visualization that improve the shape perception of molecular surfaces. We evaluate the benefits of these methods through crowd-sourced user studies as well as the feedback from several domain experts.Item Interactive Subsurface Scattering for Materials With High Scattering Distances(© 2020 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd, 2020) Maisch, Sebastian; Ropinski, Timo; Benes, Bedrich and Hauser, HelwigExisting algorithms for rendering subsurface scattering in real time cannot deal well with scattering over longer distances. Kernels for image space algorithms become very large in these circumstances and separation does not work anymore, while geometry‐based algorithms cannot preserve details very well. We present a novel approach that deals with all these downsides. While for lower scattering distances, the advantages of geometry‐based methods are small, this is not the case anymore for high scattering distances (as we will show). Our proposed method takes advantage of the highly detailed results of image space algorithms and combines it with a geometry‐based method to add the essential scattering from sources not included in image space. Our algorithm does not require pre‐computation based on the scene's geometry, it can be applied to static and animated objects directly. Our method is able to provide results that come close to ray‐traced images which we will show in direct comparisons with images generated by PBRT. We will compare our results to state of the art techniques that are applicable in these scenarios and will show that we provide superior image quality while maintaining interactive rendering times.