Browsing by Author "Fuchs, G."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Data Abstraction for Visualizing Large Time Series(© 2018 The Eurographics Association and John Wiley & Sons Ltd., 2018) Shurkhovetskyy, G.; Andrienko, N.; Andrienko, G.; Fuchs, G.; Chen, Min and Benes, BedrichNumeric time series is a class of data consisting of chronologically ordered observations represented by numeric values. Much of the data in various domains, such as financial, medical and scientific, are represented in the form of time series. To cope with the increasing sizes of datasets, numerous approaches for abstracting large temporal data are developed in the area of data mining. Many of them proved to be useful for time series visualization. However, despite the existence of numerous surveys on time series mining and visualization, there is no comprehensive classification of the existing methods based on the needs of visualization designers. We propose a classification framework that defines essential criteria for selecting an abstraction method with an eye to subsequent visualization and support of users' analysis tasks. We show that approaches developed in the data mining field are capable of creating representations that are useful for visualizing time series data. We evaluate these methods in terms of the defined criteria and provide a summary table that can be easily used for selecting suitable abstraction methods depending on data properties, desirable form of representation, behaviour features to be studied, required accuracy and level of detail, and the necessity of efficient search and querying. We also indicate directions for possible extension of the proposed classification framework.Numeric time series is a class of data consisting of chronologically ordered observations represented by numeric values. Much of the data in various domains, such as financial, medical and scientific, are represented in the form of time series. To cope with the increasing sizes of datasets, numerous approaches for abstracting large temporal data are developed in the area of data mining. Many of them proved to be useful for time series visualization. However, despite the existence of numerous surveys on time series mining and visualization, there is no comprehensive classification of the existing methods based on the needs of visualization designers. We propose a classification framework that defines essential criteria for selecting an abstraction method with an eye to subsequent visualization and support of users' analysis tasks. We show that approaches developed in the data mining field are capable of creating representations that are useful for visualizing time series data.Item Viewing Visual Analytics as Model Building(© 2018 The Eurographics Association and John Wiley & Sons Ltd., 2018) Andrienko, N.; Lammarsch, T.; Andrienko, G.; Fuchs, G.; Keim, D.; Miksch, S.; Rind, A.; Chen, Min and Benes, BedrichTo complement the currently existing definitions and conceptual frameworks of visual analytics, which focus mainly on activities performed by analysts and types of techniques they use, we attempt to define the expected results of these activities. We argue that the main goal of doing visual analytics is to build a mental and/or formal model of a certain piece of reality reflected in data. The purpose of the model may be to understand, to forecast or to control this piece of reality. Based on this model‐building perspective, we propose a detailed conceptual framework in which the visual analytics process is considered as a goal‐oriented workflow producing a model as a result. We demonstrate how this framework can be used for performing an analytical survey of the visual analytics research field and identifying the directions and areas where further research is needed.To complement the currently existing definitions and conceptual frameworks of visual analytics, which focus mainly on activities performed by analysts and types of techniques they use, we attempt to define the expected results of these activities. We argue that the main goal of doing visual analytics is to build a mental and/or formal model of a certain piece of reality reflected in data. The purpose of the model may be to understand, to forecast or to control this piece of reality. Based on this model‐building perspective, we propose a detailed conceptual framework in which the visual analytics process is considered as a goal‐oriented workflow producing a model as a result.