Browsing by Author "Vanderhaeghe, David"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Harmonics Virtual Lights: Fast Projection of Luminance Field on Spherical Harmonics for Efficient Rendering(© 2022 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2022) Mézières, Pierre; Desrichard, François; Vanderhaeghe, David; Paulin, Mathias; Hauser, Helwig and Alliez, PierreIn this paper, we introduce harmonics virtual lights (HVL), to model indirect light sources for interactive global illumination of dynamic 3D scenes. Virtual point lights (VPL) are an efficient approach to define indirect light sources and to evaluate the resulting indirect lighting. Nonetheless, VPL suffer from disturbing artefacts, especially with high‐frequency materials. Virtual spherical lights (VSL) avoid these artefacts by considering spheres instead of points but estimates the lighting integral using Monte‐Carlo which results to noise in the final image. We define HVL as an extension of VSL in a spherical harmonics (SH) framework, defining a closed form of the lighting integral evaluation. We propose an efficient SH projection of spherical lights contribution faster than existing methods. Computing the outgoing luminance requires operations when using materials with circular symmetric lobes, and operations for the general case, where is the number of SH bands. HVL can be used with either parametric or measured BRDF without extra cost and offers control over rendering time and image quality, by either decreasing or increasing the band limit used for SH projection. Our approach is particularly well‐designed to render medium‐frequency one‐bounce global illumination with arbitrary BRDF at an interactive frame rate.Item Stroke based Painterly Inbetweening(The Eurographics Association, 2022) Barroso, Nicolas; Fondevilla, Amélie; Vanderhaeghe, David; Sauvage, Basile; Hasic-Telalovic, JasminkaCreating a 2D animation with visible strokes is a tedious and time consuming task for an artist. Computer aided animation usually focus on cartoon stylized rendering, or is built from an automatic process as 3D animations stylization, loosing the painterly look and feel of hand made animation. We propose to simplify the creation of stroke-based animations: from a set of key frames, our methods automatically generates intermediate frames to depict the animation. Each intermediate frame looks as it could have been drawn by an artist, using the same high level stroke based representation as key frame, and in succession they display the subtle temporal incoherence usually found in hand-made animations.