39-Issue 8
Permanent URI for this collection
Browse
Browsing 39-Issue 8 by Subject "Animation"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Distant Collision Response in Rigid Body Simulations(The Eurographics Association and John Wiley & Sons Ltd., 2020) Coevoet, Eulalie; Andrews, Sheldon; Relles, Denali; Kry, Paul G.; Bender, Jan and Popa, TiberiuWe use a finite element model to predict the vibration response of objects in a rigid body simulation, such that rigid objects are augmented to provide a plausible elastic collision response between distant objects due to vibration. We start with a generalized eigenvalue decomposition of the elastic model to precompute a response to an impact at any point on an elastic object with fixed boundary conditions. Then, given a collision between objects, we generate an approximate response impulse to distribute to other objects already in contact with the colliding bodies. This can lead to distant impacts causing an object to slip, or a delicate stack of objects to fall. We also use a geodesic distance based spatial attenuation approximation for travelling waves in objects to respond to an impact at one contact with an impulse at other locations. This response ultimately allows a long distance relationship between contacts, both across a single object being struck, but also traversing the contact graph of a larger collection of objects. We qualitatively validate our approach with a ground truth simulation, and demonstrate a number of scenarios where a long distance relationship between contacts is valuable.Item Fully Convolutional Graph Neural Networks for Parametric Virtual Try-On(The Eurographics Association and John Wiley & Sons Ltd., 2020) Vidaurre, Raquel; Santesteban, Igor; Garces, Elena; Casas, Dan; Bender, Jan and Popa, TiberiuWe present a learning-based approach for virtual try-on applications based on a fully convolutional graph neural network. In contrast to existing data-driven models, which are trained for a specific garment or mesh topology, our fully convolutional model can cope with a large family of garments, represented as parametric predefined 2D panels with arbitrary mesh topology, including long dresses, shirts, and tight tops. Under the hood, our novel geometric deep learning approach learns to drape 3D garments by decoupling the three different sources of deformations that condition the fit of clothing: garment type, target body shape, and material. Specifically, we first learn a regressor that predicts the 3D drape of the input parametric garment when worn by a mean body shape. Then, after a mesh topology optimization step where we generate a sufficient level of detail for the input garment type, we further deform the mesh to reproduce deformations caused by the target body shape. Finally, we predict fine-scale details such as wrinkles that depend mostly on the garment material. We qualitatively and quantitatively demonstrate that our fully convolutional approach outperforms existing methods in terms of generalization capabilities and memory requirements, and therefore it opens the door to more general learning-based models for virtual try-on applications.Item Linear Time Stable PD Controllers for Physics-based Character Animation(The Eurographics Association and John Wiley & Sons Ltd., 2020) Yin, Zhiqi; Yin, KangKang; Bender, Jan and Popa, TiberiuIn physics-based character animation, Proportional-Derivative (PD) controllers are commonly used for tracking reference motions in motor control tasks. Stable PD (SPD) controllers significantly improve the numerical stability of traditional PD controllers and support large gains and large integration time steps during simulation [TLT11]. For an articulated rigid body system with n degrees of freedom, all SPD implementations to date, however, use an O(n3) dense matrix factorization based method. In this paper, we propose a linear time algorithm for SPD computation, which is based on Featherstone's forward dynamics formulation for articulated rigid body systems in generalized coordinates [Fea14]. We demonstrate the performance advantage of our algorithm by comparing with both the conventional dense matrix factorization based method and an alternative sparse matrix factorization based method.We show that the proposed algorithm provides superior stability when controlling complex models at large time steps. We further demonstrate that our algorithm can improve the learning speed and quality of a Deep Reinforcement Learning (DRL) system for physics-based character animation.Item A Pixel-Based Framework for Data-Driven Clothing(The Eurographics Association and John Wiley & Sons Ltd., 2020) Jin, Ning; Zhu, Yilin; Geng, Zhenglin; Fedkiw, Ron; Bender, Jan and Popa, TiberiuWe propose a novel approach to learning cloth deformation as a function of body pose, recasting the graph-like triangle mesh data structure into image-based data in order to leverage popular and well-developed convolutional neural networks (CNNs) in a two-dimensional Euclidean domain. Then, a three-dimensional animation of clothing is equivalent to a sequence of twodimensional RGB images driven/choreographed by time dependent joint angles. In order to reduce nonlinearity demands on the neural network, we utilize procedural skinning of the body surface to capture much of the rotation/deformation so that the RGB images only contain textures of displacement offsets from skin to clothing. Notably, we illustrate that our approach does not require accurate unclothed body shapes or robust skinning techniques. Additionally, we discuss how standard image based techniques such as image partitioning for higher resolution can readily be incorporated into our framework.Item Probabilistic Character Motion Synthesis using a Hierarchical Deep Latent Variable Model(The Eurographics Association and John Wiley & Sons Ltd., 2020) Ghorbani, Saeed; Wloka, Calden; Etemad, Ali; Brubaker, Marcus A.; Troje, Nikolaus F.; Bender, Jan and Popa, TiberiuWe present a probabilistic framework to generate character animations based on weak control signals, such that the synthesized motions are realistic while retaining the stochastic nature of human movement. The proposed architecture, which is designed as a hierarchical recurrent model, maps each sub-sequence of motions into a stochastic latent code using a variational autoencoder extended over the temporal domain. We also propose an objective function which respects the impact of each joint on the pose and compares the joint angles based on angular distance. We use two novel quantitative protocols and human qualitative assessment to demonstrate the ability of our model to generate convincing and diverse periodic and non-periodic motion sequences without the need for strong control signals.