Eurovis: Eurographics Conference on Visualization
Permanent URI for this community
Browse
Browsing Eurovis: Eurographics Conference on Visualization by Subject "and texture"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Depth of Field Effects for Interactive Direct Volume Rendering(The Eurographics Association and Blackwell Publishing Ltd., 2011) Schott, Mathias; Grosset, A. V. Pascal; Martin, Tobias; Pegoraro, Vincent; Smith, Sean T.; Hansen, Charles D.; H. Hauser, H. Pfister, and J. J. van WijkIn this paper, a method for interactive direct volume rendering is proposed for computing depth of field effects, which previously were shown to aid observers in depth and size perception of synthetically generated images. The presented technique extends those benefits to volume rendering visualizations of 3D scalar fields from CT/MRI scanners or numerical simulations. It is based on incremental filtering and as such does not depend on any precomputation, thus allowing interactive explorations of volumetric data sets via on-the-fly editing of the shading model parameters or (multi-dimensional) transfer functions.Item Explorative Blood Flow Visualization using Dynamic Line Filtering based on Surface Features(The Eurographics Association and John Wiley & Sons Ltd., 2018) Behrendt, Benjamin; Berg, Philipp; Beuing, Oliver; Preim, Bernhard; Saalfeld, Sylvia; Jeffrey Heer and Heike Leitte and Timo RopinskiRupture risk assessment is a key to devise patient-specific treatment plans of cerebral aneurysms. To understand and predict the development of aneurysms and other vascular diseases over time, both hemodynamic flow patterns and their effect on the vessel surface need to be analyzed. Flow structures close to the vessel wall often correlate directly with local changes in surface parameters, such as pressure or wall shear stress. Yet, in many existing applications, the analyses of flow and surface features are either somewhat detached from one another or only globally available. Especially for the identification of specific blood flow characteristics that cause local startling parameters on the vessel surface, like elevated pressure values, an interactive analysis tool is missing. The explorative visualization of flow data is challenging due to the complexity of the underlying data. In order to find meaningful structures in the entirety of the flow, the data has to be filtered based on the respective explorative aim. In this paper, we present a combination of visualization, filtering and interaction techniques for explorative analysis of blood flow with a focus on the relation of local surface parameters and underlying flow structures. Coherent bundles of pathlines can be interactively selected based on their relation to features of the vessel wall and further refined based on their own hemodynamic features. This allows the user to interactively select and explore flow structures locally affecting a certain region on the vessel wall and therefore to understand the cause and effect relationship between these entities. Additionally, multiple selected flow structures can be compared with respect to their quantitative parameters, such as flow speed. We confirmed the usefulness of our approach by conducting an informal interview with two expert neuroradiologists and an expert in flow simulation. In addition, we recorded several insights the neuroradiologists were able to gain with the help of our tool.Item Visualization of Particle-based Data with Transparency and Ambient Occlusion(The Eurographics Association and John Wiley & Sons Ltd., 2015) Staib, Joachim; Grottel, Sebastian; Gumhold, Stefan; H. Carr, K.-L. Ma, and G. SantucciParticle-based simulation techniques, like the discrete element method or molecular dynamics, are widely used in many research fields. In real-time explorative visualization it is common to render the resulting data using opaque spherical glyphs with local lighting only. Due to massive overlaps, however, inner structures of the data are often occluded rendering visual analysis impossible. Furthermore, local lighting is not sufficient as several important features like complex shapes, holes, rifts or filaments cannot be perceived well. To address both problems we present a new technique that jointly supports transparency and ambient occlusion in a consistent illumination model. Our approach is based on the emission-absorption model of volume rendering. We provide analytic solutions to the volume rendering integral for several density distributions within a spherical glyph. Compared to constant transparency our approach preserves the three-dimensional impression of the glyphs much better. We approximate ambient illumination with a fast hierarchical voxel cone-tracing approach, which builds on a new real-time voxelization of the particle data. Our implementation achieves interactive frame rates for millions of static or dynamic particles without any preprocessing. We illustrate the merits of our method on real-world data sets gaining several new insights.