EuroVA2023
Permanent URI for this collection
Browse
Browsing EuroVA2023 by Subject "Dimensionality reduction"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item ShaRP: Shape-Regularized Multidimensional Projections(The Eurographics Association, 2023) Machado, Alister; Telea, Alexandru; Behrisch, Michael; Angelini, Marco; El-Assady, MennatallahProjections, or dimensionality reduction methods, are techniques of choice for the visual exploration of high-dimensional data. Many such techniques exist, each one of them having a distinct visual signature - i.e., a recognizable way to arrange points in the resulting scatterplot. Such signatures are implicit consequences of algorithm design, such as whether the method focuses on local vs global data pattern preservation; optimization techniques; and hyperparameter settings. We present a novel projection technique - ShaRP - that provides users explicit control over the visual signature of the created scatterplot, which can cater better to interactive visualization scenarios. ShaRP scales well with dimensionality and dataset size, generically handles any quantitative dataset, and provides this extended functionality of controlling projection shapes at a small, user-controllable cost in terms of quality metrics.