PG2020 Short Papers, Posters, and Work-in-Progress Papers
Permanent URI for this collection
Browse
Browsing PG2020 Short Papers, Posters, and Work-in-Progress Papers by Subject "Neural networks"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item An Energy-Conserving Hair Shading Model Based on Neural Style Transfer(The Eurographics Association, 2020) Qiao, Zhi; Kanai, Takashi; Lee, Sung-hee and Zollmann, Stefanie and Okabe, Makoto and Wuensche, BurkhardWe present a novel approach for shading photorealistic hair animation, which is the essential visual element for depicting realistic hairs of virtual characters. Our model is able to shade high-quality hairs quickly by extending the conditional Generative Adversarial Networks. Furthermore, our method is much faster than the previous onerous rendering algorithms and produces fewer artifacts than other neural image translation methods. In this work, we provide a novel energy-conserving hair shading model, which retains the vast majority of semi-transparent appearances and exactly produces the interaction with lights of the scene. Our method is effortless to implement, faster and computationally more efficient than previous algorithms.