EuroVisShort2021
Permanent URI for this collection
Browse
Browsing EuroVisShort2021 by Subject "Information visualization"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Algorithmic Improvements on Hilbert and Moore Treemaps for Visualization of Large Tree-structured Datasets(The Eurographics Association, 2021) Scheibel, Willy; Weyand, Christopher; Bethge, Joseph; Döllner, Jürgen; Agus, Marco and Garth, Christoph and Kerren, AndreasHilbert and Moore treemaps are based on the same named space-filling curves to lay out tree-structured data for visualization. One main component of them is a partitioning subroutine, whose algorithmic complexity poses problems when scaling to industry-sized datasets. Further, the subroutine allows for different optimization criteria that result in different layout decisions. This paper proposes conceptual and algorithmic improvements to this partitioning subroutine. Two measures for the quality of partitioning are proposed, resulting in the min-max and min-variance optimization tasks. For both tasks, linear-time algorithms are presented that find an optimal solution. The implementation variants are evaluated with respect to layout metrics and run-time performance against a previously available greedy approach. The results show significantly improved run time and no deterioration in layout metrics, suggesting effective use of Hilbert and Moore treemaps for datasets with millions of nodes.Item Discussion Flows: An Interactive Visualization for Analyzing Engagement in Multi-Party Meetings(The Eurographics Association, 2021) Wang, Tao; Keck, Mandy; Vosough, Zana; Agus, Marco and Garth, Christoph and Kerren, AndreasEngagement in multi-party meetings is a key indicator of outcome. Poor attendee involvement can hinder progress and hurt team cohesion. Thus, there is a strong motivation for organizations to better understand what happens in meetings and improve upon their experience. However, analyzing multi-party meetings is a challenging task, as one needs to consider both verbal exchanges and meeting dynamics among speakers. There is currently a lack of support on these unique tasks. In this paper, we present a new visual approach to help analyze multi-party meetings in industry settings: Discussion Flows, a multi-level interactive visualization tool. Its glyph-based overview allows effortless comparison of overall interactions among different meetings, whereas the individual meeting view uses flow diagrams to convey the relative participation of different speakers throughout the meeting agenda in different levels of details. We demonstrate our approach with meeting recordings from an open source dialogue corpora and use them as the benchmark dataset.Item RoomCanvas: A Visualization System for Spatiotemporal Temperature Data in Smart Homes(The Eurographics Association, 2021) König, Bastian; Limberger, Daniel; Klimke, Jan; Hagedorn, Benjamin; Döllner, Jürgen; Agus, Marco and Garth, Christoph and Kerren, AndreasSpatiotemporal measurements such as power consumption, temperature, humidity, movement, noise, brightness, etc., will become ubiquitously available in both old and modern homes to capture and analyze behavioral patterns. The data is fed into analytics platforms and tapped by services but is generally not readily available to consumers for exploration due in part to its inherent complexity and volume. We present an interactive visualization system that uses a simplified 3D representation of building interiors as a canvas for a unified sensor data display. The system's underlying visualization supports spatial as well as temporal accumulation of data, e.g., temperature and humidity values. It introduces a volumetric data interpolation approach which takes 3D room boundaries such as walls, doors, and windows into account. We showcase an interactive, web-based prototype that allows for the exploration of historical as well as real-time data of multiple temperature and humidity sensors. Finally, we sketch an integrated pipeline from sensor data acquisition to visualization, discuss the creation of semantic geometry and subsequent preprocessing, and provide insights into our real-time rendering implementation.Item SailVis: Reconstruction and Multifaceted Visualization of Sail Shape(The Eurographics Association, 2021) Mu, Danfeng; Pieras, Marcos; Broekens, Douwe; Marroquim, Ricardo; Agus, Marco and Garth, Christoph and Kerren, AndreasWhile sailing, sailors rely on their eyes to inspect the sail shape and adjust the configurations to achieve an appropriate shape for a certain the weather condition. Mastering this so-called trimming process requires years of experience since the visual inspection of the sail shape suffers from inaccuracies and many times are difficult to communicate verbally. Therefore, this research proposes a visual analysis tool that presents an accurate sail shape representation and supports sailors in investigating the optimal sail shape for certain weather conditions. In order to achieve our goals, we reconstruct the 3D sail shape from point clouds acquired by photogrammetry methods. For incomplete acquisitions we deform a complete template sail to estimate the missing parts. We designed a visualization dashboard for sailors to explore the 3D structure, 2D profiles and characteristics of the time-varying sail shape as well as analyze their relation to boat speed. The usability of the visualization tool is tested through a qualitative evaluation with two sailing experts. The result shows that the reconstruction and deformation of sail shape are plausible. Furthermore, the visualization dashboard has the potential to enhance sailors' comprehension of sail shape and provide insights towards optimal trimming.Item TaskVis: Task-oriented Visualization Recommendation(The Eurographics Association, 2021) Shen, Leixian; Shen, Enya; Tai, Zhiwei; Song, Yiran; Wang, Jianmin; Agus, Marco and Garth, Christoph and Kerren, AndreasGeneral visualization recommendation systems typically make design decisions of the dataset automatically. However, these systems are only able to prune meaningless visualizations but fail to recommend targeted results. In this paper, we contributed TaskVis, a task-oriented visualization recommendation approach with detailed modeling of the user's analysis task. We first summarized a task base with 18 analysis tasks by a survey both in academia and industry. On this basis, we further maintained a rule base, which extends empirical wisdom with our targeted modeling of analysis tasks. Inspired by Draco, we enumerated candidate visualizations through answer set programming. After visualization generation, TaskVis supports four ranking schemes according to the complexity of charts, coverage of the user's interested columns and tasks. In two user studies, we found that TaskVis can well reflect the user's preferences and strike a great balance between automation and the user's intent.