SCA: Eurographics/SIGGRAPH Symposium on Computer Animation
Permanent URI for this community
Browse
Browsing SCA: Eurographics/SIGGRAPH Symposium on Computer Animation by Subject "and object representations"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Level Set Method for Ductile Fracture(ACM SIGGRAPH / Eurographics Association, 2013) Hegemann, Jan; Jiang, Chenfanfu; Schroeder, Craig; Teran, Joseph M.; Theodore Kim and Robert SumnerWe utilize the shape derivative of the classical Griffith's energy in a level set method for the simulation of dynamic ductile fracture. The level set is defined in the undeformed configuration of the object, and its evolution is designed to represent a transition from undamaged to failed material. No re-meshing is needed since the resulting topological changes are handled naturally by the level set method. We provide a new mechanism for the generation of fragments of material during the progression of the level set in the Griffith's energy minimization. Collisions between different material pieces are resolved with impulses derived from the material point method over a background Eulerian grid. This provides a stable means for colliding with embedded interfaces. Simulation of corotational elasticity is based on an implicit finite element discretization.Item A Peridynamic Perspective on Spring-Mass Fracture(The Eurographics Association, 2014) Levine, Joshua A.; Bargteil, Adam W.; Corsi, Christopher; Tessendorf, Jerry; Geist, Robert; Vladlen Koltun and Eftychios SifakisThe application of spring-mass systems to the animation of brittle fracture is revisited. The motivation arises from the recent popularity of peridynamics in the computational physics community. Peridynamic systems can be regarded as spring-mass systems with two specific properties. First, spring forces are based on a simple strain metric, thereby decoupling spring stiffness from spring length. Second, masses are connected using a distancebased criterion. The relatively large radius of influence typically leads to a few hundred springs for every mass point. Spring-mass systems with these properties are shown to be simple to implement, trivially parallelized, and well-suited to animating brittle fracture.