39-Issue 7
Permanent URI for this collection
Browse
Browsing 39-Issue 7 by Subject "based models"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item FAKIR: An Algorithm for Revealing the Anatomy and Pose of Statues from Raw Point Sets(The Eurographics Association and John Wiley & Sons Ltd., 2020) Fu, Tong; Chaine, Raphaelle; Digne, Julie; Eisemann, Elmar and Jacobson, Alec and Zhang, Fang-Lue3D acquisition of archaeological artefacts has become an essential part of cultural heritage research for preservation or restoration purpose. Statues, in particular, have been at the center of many projects. In this paper, we introduce a way to improve the understanding of acquired statues representing real or imaginary creatures by registering a simple and pliable articulated model to the raw point set data. Our approach performs a Forward And bacKward Iterative Registration (FAKIR) which proceeds joint by joint, needing only a few iterations to converge. We are thus able to detect the pose and elementary anatomy of sculptures, with possibly non realistic body proportions. By adapting our simple skeleton, our method can work on animals and imaginary creatures.Item A Graph-based One-Shot Learning Method for Point Cloud Recognition(The Eurographics Association and John Wiley & Sons Ltd., 2020) Fan, Zhaoxin; Liu, Hongyan; He, Jun; Sun, Qi; Du, Xiaoyong; Eisemann, Elmar and Jacobson, Alec and Zhang, Fang-LuePoint cloud based 3D vision tasks, such as 3D object recognition, are critical to many real world applications such as autonomous driving. Many point cloud processing models based on deep learning have been proposed by researchers recently. However, they are all large-sample dependent, which means that a large amount of manually labelled training data are needed to train the model, resulting in huge labor cost. In this paper, to tackle this problem, we propose a One-Shot learning model for Point Cloud Recognition, namely OS-PCR. Different from previous methods, our method formulates a new setting, where the model only needs to see one sample per class once for memorizing at inference time when new classes are needed to be recognized. To fulfill this task, we design three modules in the model: an Encoder Module, an Edge-conditioned Graph Convolutional Network Module, and a Query Module. To evaluate the performance of the proposed model, we build a one-shot learning benchmark dataset for 3D point cloud analysis. Then, comprehensive experiments are conducted on it to demonstrate the effectiveness of our proposed model.Item SRNet: A 3D Scene Recognition Network using Static Graph and Dense Semantic Fusion(The Eurographics Association and John Wiley & Sons Ltd., 2020) Fan, Zhaoxin; Liu, Hongyan; He, Jun; Sun, Qi; Du, Xiaoyong; Eisemann, Elmar and Jacobson, Alec and Zhang, Fang-LuePoint cloud based 3D scene recognition is fundamental to many real world applications such as Simultaneous Localization and Mapping (SLAM). However, most of existing methods do not take full advantage of the contextual semantic features of scenes. And their recognition abilities are severely affected by dynamic noise such as points of cars and pedestrians in the scene. To tackle these issues, we propose a new Scene Recognition Network, namely SRNet. In this model, to learn local features without being affected by dynamic noise, we propose Static Graph Convolution (SGC) module, which are then stacked as our backbone. Next, to further avoid dynamic noise, we introduce a Spatial Attention Module (SAM) to make the feature descriptor pay more attention to immovable local areas that are more relevant to our task. Finally, in order to make a more profound sense of the scene, we design a Dense Semantic Fusion (DSF) strategy to integrate multi-level features during feature propagation, which helps the model deepen its understanding of the contextual semantics of scenes. By utilizing these designs, SRNet can map scenes to discriminative and generalizable feature vectors, which are then used for finding matching pairs. Experimental studies demonstrate that SRNet achieves new state-of-the-art on scene recognition and shows good generalization ability to other point cloud based tasks.Item Weakly Supervised Part-wise 3D Shape Reconstruction from Single-View RGB Images(The Eurographics Association and John Wiley & Sons Ltd., 2020) Niu, Chengjie; Yu, Yang; Bian, Zhenwei; Li, Jun; Xu, Kai; Eisemann, Elmar and Jacobson, Alec and Zhang, Fang-LueIn order for the deep learning models to truly understand the 2D images for 3D geometry recovery, we argue that singleview reconstruction should be learned in a part-aware and weakly supervised manner. Such models lead to more profound interpretation of 2D images in which part-based parsing and assembling are involved. To this end, we learn a deep neural network which takes a single-view RGB image as input, and outputs a 3D shape in parts represented by 3D point clouds with an array of 3D part generators. In particular, we devise two levels of generative adversarial network (GAN) to generate shapes with both correct part shape and reasonable overall structure. To enable a self-taught network training, we devise a differentiable projection module along with a self-projection loss measuring the error between the shape projection and the input image. The training data in our method is unpaired between the 2D images and the 3D shapes with part decomposition. Through qualitative and quantitative evaluations on public datasets, we show that our method achieves good performance in part-wise single-view reconstruction.