EG2024
Permanent URI for this community
Browse
Browsing EG2024 by Subject "based models"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Dense 3D Gaussian Splatting Initialization for Sparse Image Data(The Eurographics Association, 2024) Seibt, Simon; Chang, Thomas Vincent Siu-Lung; von Rymon Lipinski, Bartosz ; Latoschik, Marc Erich; Liu, Lingjie; Averkiou, MelinosThis paper presents advancements in novel-view synthesis with 3D Gaussian Splatting (3DGS) using a dense and accurate SfM point cloud initialization approach. We address the challenge of achieving photorealistic renderings from sparse image data, where basic 3DGS training may result in suboptimal convergence, thus leading to visual artifacts. The proposed method enhances precision and density of initially reconstructed point clouds by refining 3D positions and extrapolating additional points, even for difficult image regions, e.g. with repeating patterns and suboptimal visual coverage. Our contributions focus on improving ''Dense Feature Matching for Structure-from-Motion'' (DFM4SfM) based on a homographic decomposition of the image space to support 3DGS training: First, a grid-based feature detection method is introduced for DFM4SfM to ensure a welldistributed 3D Gaussian initialization uniformly over all depth planes. Second, the SfM feature matching is complemented by a geometric plausibility check, priming the homography estimation and thereby improving the initial placement of 3D Gaussians. Experimental results on the NeRF-LLFF dataset demonstrate that this approach achieves superior qualitative and quantitative results, even for fewer views, and the potential for a significantly accelerated 3DGS training with faster convergence.Item Distributed Surface Reconstruction(The Eurographics Association, 2024) Marin, Diana; Komon, Patrick; Ohrhallinger, Stefan; Wimmer, Michael; Liu, Lingjie; Averkiou, MelinosRecent advancements in scanning technologies and their rise in availability have shifted the focus from reconstructing surfaces from point clouds of small areas to large, e.g., city-wide scenes, containing massive amounts of data. We adapt a surface reconstruction method to work in a distributed fashion on a high-performance cluster, reconstructing datasets with millions of vertices in seconds. We exploit the locality of the connectivity required by the reconstruction algorithm to efficiently divide-andconquer the problem of creating triangulations from very large unstructured point clouds.Item Recent Trends in 3D Reconstruction of General Non-Rigid Scenes(The Eurographics Association and John Wiley & Sons Ltd., 2024) Yunus, Raza; Lenssen, Jan Eric; Niemeyer, Michael; Liao, Yiyi; Rupprecht, Christian; Theobalt, Christian; Pons-Moll, Gerard; Huang, Jia-Bin; Golyanik, Vladislav; Ilg, Eddy; Aristidou, Andreas; Macdonnell, RachelReconstructing models of the real world, including 3D geometry, appearance, and motion of real scenes, is essential for computer graphics and computer vision. It enables the synthesizing of photorealistic novel views, useful for the movie industry and AR/VR applications. It also facilitates the content creation necessary in computer games and AR/VR by avoiding laborious manual design processes. Further, such models are fundamental for intelligent computing systems that need to interpret real-world scenes and actions to act and interact safely with the human world. Notably, the world surrounding us is dynamic, and reconstructing models of dynamic, non-rigidly moving scenes is a severely underconstrained and challenging problem. This state-of-the-art report (STAR) offers the reader a comprehensive summary of state-of-the-art techniques with monocular and multi-view inputs such as data from RGB and RGB-D sensors, among others, conveying an understanding of different approaches, their potential applications, and promising further research directions. The report covers 3D reconstruction of general non-rigid scenes and further addresses the techniques for scene decomposition, editing and controlling, and generalizable and generative modeling. More specifically, we first review the common and fundamental concepts necessary to understand and navigate the field and then discuss the state-of-the-art techniques by reviewing recent approaches that use traditional and machine-learning-based neural representations, including a discussion on the newly enabled applications. The STAR is concluded with a discussion of the remaining limitations and open challenges.