41-Issue 5
Permanent URI for this collection
Browse
Browsing 41-Issue 5 by Subject "Computer graphics"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Harmonic Shape Interpolation on Multiply-connected Planar Domains(The Eurographics Association and John Wiley & Sons Ltd., 2022) Shi, Dongbo; Chen, Renjie; Campen, Marcel; Spagnuolo, MichelaShape interpolation is a fundamental problem in computer graphics. Recently, there have been some interpolation methods developed which guarantee that the results are of bounded amount of geometric distortion, hence ensure high quality interpolation. However, none of these methods is applicable to shapes within the multiply-connected domains. In this work, we develop an interpolation scheme for harmonic mappings, that specifically addresses this limitation. We opt to interpolate the pullback metric of the input harmonic maps as proposed by Chen et al. [CWKBC13]. However, the interpolated metric does not correspond to any planar mapping, which is the main challenge in the interpolation problem for multiply-connected domains. We propose to solve this by projecting the interpolated metric into the planar harmonic mapping space. Specifically, we develop a Newton iteration to minimize the isometric distortion of the intermediate mapping, with respect to the interpolated metric. For more efficient Newton iteration, we further derived a simple analytic formula for the positive semidefinite (PSD) projection of the Hessian matrix of our distortion energy. Through extensive experiments and comparisons with the state-of-the-art, we demonstrate the efficacy and robustness of our method for various inputs.Item Rational Bézier Guarding(The Eurographics Association and John Wiley & Sons Ltd., 2022) Khanteimouri, Payam; Mandad, Manish; Campen, Marcel; Campen, Marcel; Spagnuolo, MichelaWe present a reliable method to generate planar meshes of nonlinear rational triangular elements. The elements are guaranteed to be valid, i.e. defined by injective rational functions. The mesh is guaranteed to conform exactly, without geometric error, to arbitrary rational domain boundary and feature curves. The method generalizes the recent Bézier Guarding technique, which is applicable only to polynomial curves and elements. This generalization enables the accurate handling of practically important cases involving, for instance, circular or elliptic arcs and NURBS curves, which cannot be matched by polynomial elements. Furthermore, although many practical scenarios are concerned with rational functions of quadratic and cubic degree only, our method is fully general and supports arbitrary degree. We demonstrate the method on a variety of test cases.