VCBM 2022: Eurographics Workshop on Visual Computing for Biology and Medicine
Permanent URI for this collection
Browse
Browsing VCBM 2022: Eurographics Workshop on Visual Computing for Biology and Medicine by Subject "centered computing → Visualization"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item COMFIS - Comparative Visualization of Simulated Medical Flow Data(The Eurographics Association, 2022) Meuschke, Monique; Voß, Samuel; Eulzer, Pepe; Janiga, Gabor; Arens, Christoph; Wickenhöfer, Ralph; Preim, Bernhard; Lawonn, Kai; Renata G. Raidou; Björn Sommer; Torsten W. Kuhlen; Michael Krone; Thomas Schultz; Hsiang-Yun WuSimulations of human blood and airflow are playing an increasing role in personalized medicine. Comparing flow data of different treatment scenarios or before and after an intervention is important to assess treatment options and success. However, existing visualization tools are either designed for the evaluation of a single data set or limit the comparison to a few partial aspects such as scalar fields defined on the vessel wall or internal flow patterns. Therefore, we present COMFIS, a system for the comparative visual analysis of two simulated medical flow data sets, e.g. before and after an intervention. We combine various visualization and interaction methods for comparing different aspects of the underlying, often time-dependent data. These include comparative views of different scalar fields defined on the vessel/mucous wall, comparative depictions of the underlying volume data, and comparisons of flow patterns. We evaluated COMFIS with CFD engineers and medical experts, who were able to efficiently find interesting data insights that help to assess treatment options.Item Distance Visualizations for Vascular Structures in Desktop and VR: Overview and Implementation(The Eurographics Association, 2022) Hombeck, Jan; Meuschke, Monique; Lieb, Simon; Lichtenberg, Nils; Datta, Rabi; Krone, Michael; Hansen, Christian; Preim, Bernhard; Lawonn, Kai; Renata G. Raidou; Björn Sommer; Torsten W. Kuhlen; Michael Krone; Thomas Schultz; Hsiang-Yun WuThe role of expressive surface visualizations in rendering vascular structures has seen an increased impact over the last years. Surface visualizations provide an overview of complex anatomical structures and support treatment planning as well as medical education. To support decision-making, physicians need visualizations that depict anatomical structures and their spatial relations to each other, i.e., well perceivable visual encodings of egocentric and endocentric distances. We give an overview of common techniques for encoding distance information of 3D vessel surfaces. We also provide an implementation of all the visualizations presented as a starting point for other researchers. Therefore, we provide a Unity environment for each visualization, as well as implementation instructions. Thirteen different visualizations are included in this work, which can be divided into fundamental, surface-based, auxiliary and illustrative visualizations.