EG 2016 - Full Papers - CGF 35-Issue 2
Permanent URI for this collection
Browse
Browsing EG 2016 - Full Papers - CGF 35-Issue 2 by Subject "Digitization and Image Capture"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Convolutional Sparse Coding for High Dynamic Range Imaging(The Eurographics Association and John Wiley & Sons Ltd., 2016) Serrano, Ana; Heide, Felix; Gutierrez, Diego; Wetzstein, Gordon; Masia, Belen; Joaquim Jorge and Ming LinCurrent HDR acquisition techniques are based on either (i) fusing multibracketed, low dynamic range (LDR) images, (ii) modifying existing hardware and capturing different exposures simultaneously with multiple sensors, or (iii) reconstructing a single image with spatially-varying pixel exposures. In this paper, we propose a novel algorithm to recover high-quality HDRI images from a single, coded exposure. The proposed reconstruction method builds on recently-introduced ideas of convolutional sparse coding (CSC); this paper demonstrates how to make CSC practical for HDR imaging. We demonstrate that the proposed algorithm achieves higher-quality reconstructions than alternative methods, we evaluate optical coding schemes, analyze algorithmic parameters, and build a prototype coded HDR camera that demonstrates the utility of convolutional sparse HDRI coding with a custom hardware platform.Item Multisampling Compressive Video Spectroscopy(The Eurographics Association and John Wiley & Sons Ltd., 2016) Jeon, Daniel S.; Choi, Inchang; Kim, Min H.; Joaquim Jorge and Ming LinThe coded aperture snapshot spectral imaging (CASSI) architecture has been employed widely for capturing hyperspectral video. Despite allowing concurrent capture of hyperspectral video, spatial modulation in CASSI sacrifices image resolution significantly while reconstructing spectral projection via sparse sampling. Several multiview alternatives have been proposed to handle this low spatial resolution problem and improve measurement accuracy, for instance, by adding a translation stage for the coded aperture or changing the static coded aperture with a digital micromirror device for dynamic modulation. Stateof- the-art solutions enhance spatial resolution significantly but are incapable of capturing video using CASSI. In this paper, we present a novel compressive coded aperture imaging design that increases spatial resolution while capturing 4D hyperspectral video of dynamic scenes. We revise the traditional CASSI design to allow for multiple sampling of the randomness of spatial modulation in a single frame. We demonstrate that our compressive video spectroscopy approach yields enhanced spatial resolution and consistent measurements, compared with the traditional CASSI design.