41-Issue 4
Permanent URI for this collection
Browse
Browsing 41-Issue 4 by Subject "CCS Concepts: Computing methodologies --> Reflectance modeling"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Controlling Material Appearance by Examples(The Eurographics Association and John Wiley & Sons Ltd., 2022) Hu, Yiwei; Hašan, Miloš; Guerrero, Paul; Rushmeier, Holly; Deschaintre, Valentin; Ghosh, Abhijeet; Wei, Li-YiDespite the ubiquitous use of materials maps in modern rendering pipelines, their editing and control remains a challenge. In this paper, we present an example-based material control method to augment input material maps based on user-provided material photos. We train a tileable version of MaterialGAN and leverage its material prior to guide the appearance transfer, optimizing its latent space using differentiable rendering. Our method transfers the micro and meso-structure textures of user provided target(s) photographs, while preserving the structure and quality of the input material. We show our methods can control existing material maps, increasing realism or generating new, visually appealing materials.Item A Microfacet-based Hair Scattering Model(The Eurographics Association and John Wiley & Sons Ltd., 2022) Huang, Weizhen; Hullin, Matthias B.; Hanika, Johannes; Ghosh, Abhijeet; Wei, Li-YiThe development of scattering models and rendering algorithms for human hair remains an important area of research in computer graphics. Virtually all available models for scattering off hair or fur fibers are based on separable lobes, which bring practical advantages in importance sampling, but do not represent physically-plausible microgeometry. In this paper, we contribute the first microfacet-based hair scattering model. Based on a rough cylinder geometry with tilted cuticle scales, our far-field model is non-separable by nature, yet allows accurate importance sampling. Additional benefits include support for elliptical hair cross-sections and an analytical solution for the reflected lobe using the GGX distribution. We show that our model captures glint-like forward scattering features in the R lobe that have been observed before but not properly explained.Item A Position-Free Path Integral for Homogeneous Slabs and Multiple Scattering on Smith Microfacets(The Eurographics Association and John Wiley & Sons Ltd., 2022) Bitterli, Benedikt; d'Eon, Eugene; Ghosh, Abhijeet; Wei, Li-YiWe consider the problem of multiple scattering on Smith microfacets. This problem is equivalent to computing volumetric light transport in a homogeneous slab. Although the symmetry of the slab allows for significant simplification, fully analytic solutions are scarce and not general enough for most applications. Standard Monte Carlo simulation, although general, is expensive and leads to variance that must be dealt with. We present the first unbiased, truly position-free path integral for evaluating the BSDF of a homogeneous slab. We collapse the spatially-1D path integral of previous works to a position-free form using an analytical preintegration of collision distances. Evaluation of the resulting path integral, which now contains only directions, reduces to simple recursive manipulation of exponential distributions. Applying Monte Carlo to solve the reduced integration problem leads to lower variance. Our new algorithm allows us to render multiple scattering on Smith microfacets with less variance than prior work, and, in the case of conductors, to do so without any bias. Additionally, our algorithm can also be used to accelerate the rendering of BSDFs containing volumetrically scattering layers, at reduced variance compared to standard Monte Carlo integration.