43-Issue 1
Permanent URI for this collection
Browse
Browsing 43-Issue 1 by Subject "geometric modelling"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Advances in Data‐Driven Analysis and Synthesis of 3D Indoor Scenes(© 2024 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2024) Patil, Akshay Gadi; Patil, Supriya Gadi; Li, Manyi; Fisher, Matthew; Savva, Manolis; Zhang, Hao; Alliez, Pierre; Wimmer, MichaelThis report surveys advances in deep learning‐based modelling techniques that address four different 3D indoor scene analysis tasks, as well as synthesis of 3D indoor scenes. We describe different kinds of representations for indoor scenes, various indoor scene datasets available for research in the aforementioned areas, and discuss notable works employing machine learning models for such scene modelling tasks based on these representations. Specifically, we focus on the and of 3D indoor scenes. With respect to analysis, we focus on four basic scene understanding tasks – 3D object detection, 3D scene segmentation, 3D scene reconstruction and 3D scene similarity. And for synthesis, we mainly discuss neural scene synthesis works, though also highlighting model‐driven methods that allow for human‐centric, progressive scene synthesis. We identify the challenges involved in modelling scenes for these tasks and the kind of machinery that needs to be developed to adapt to the data representation, and the task setting in general. For each of these tasks, we provide a comprehensive summary of the state‐of‐the‐art works across different axes such as the choice of data representation, backbone, evaluation metric, input, output and so on, providing an organized review of the literature. Towards the end, we discuss some interesting research directions that have the potential to make a direct impact on the way users interact and engage with these virtual scene models, making them an integral part of the metaverse.Item Real‐time Terrain Enhancement with Controlled Procedural Patterns(© 2024 Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd., 2024) Grenier, C.; Guérin, É.; Galin, É.; Sauvage, B.; Alliez, Pierre; Wimmer, MichaelAssisting the authoring of virtual terrains is a perennial challenge in the creation of convincing synthetic landscapes. Particularly, there is a need for augmenting artist-controlled low-resolution models with consistent relief details.We present a structured noise that procedurally enhances terrains in real time by adding spatially varying erosion patterns. The patterns can be cascaded, i.e. narrow ones are nested into large ones. Our model builds upon the Phasor noise, which we adapt to the specific characteristics of terrains (water flow, slope orientation). Relief details correspond to the underlying terrain characteristics and align with the slope to preserve the coherence of generated landforms. Moreover, our model allows for artist control, providing a palette of control maps, and can be efficiently implemented in graphics hardware, thus allowing for real-time synthesis and rendering, therefore permitting effective and intuitive authoring.