PG2022 Short Papers, Posters, and Work-in-Progress Papers
Permanent URI for this collection
Browse
Browsing PG2022 Short Papers, Posters, and Work-in-Progress Papers by Subject "Animation"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Learning a Style Space for Interactive Line Drawing Synthesis from Animated 3D Models(The Eurographics Association, 2022) Wang, Zeyu; Wang, Tuanfeng Y.; Dorsey, Julie; Yang, Yin; Parakkat, Amal D.; Deng, Bailin; Noh, Seung-TakMost non-photorealistic rendering (NPR) methods for line drawing synthesis operate on a static shape. They are not tailored to process animated 3D models due to extensive per-frame parameter tuning needed to achieve the intended look and natural transition. This paper introduces a framework for interactive line drawing synthesis from animated 3D models based on a learned style space for drawing representation and interpolation. We refer to style as the relationship between stroke placement in a line drawing and its corresponding geometric properties. Starting from a given sequence of an animated 3D character, a user creates drawings for a set of keyframes. Our system embeds the raster drawings into a latent style space after they are disentangled from the underlying geometry. By traversing the latent space, our system enables a smooth transition between the input keyframes. The user may also edit, add, or remove the keyframes interactively, similar to a typical keyframe-based workflow. We implement our system with deep neural networks trained on synthetic line drawings produced by a combination of NPR methods. Our drawing-specific supervision and optimization-based embedding mechanism allow generalization from NPR line drawings to user-created drawings during run time. Experiments show that our approach generates high-quality line drawing animations while allowing interactive control of the drawing style across frames.