38-Issue 5
Permanent URI for this collection
Browse
Browsing 38-Issue 5 by Subject "Computing methodologies"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item A Convolutional Decoder for Point Clouds using Adaptive Instance Normalization(The Eurographics Association and John Wiley & Sons Ltd., 2019) Lim, Isaak; Ibing, Moritz; Kobbelt, Leif; Bommes, David and Huang, HuiAutomatic synthesis of high quality 3D shapes is an ongoing and challenging area of research. While several data-driven methods have been proposed that make use of neural networks to generate 3D shapes, none of them reach the level of quality that deep learning synthesis approaches for images provide. In this work we present a method for a convolutional point cloud decoder/generator that makes use of recent advances in the domain of image synthesis. Namely, we use Adaptive Instance Normalization and offer an intuition on why it can improve training. Furthermore, we propose extensions to the minimization of the commonly used Chamfer distance for auto-encoding point clouds. In addition, we show that careful sampling is important both for the input geometry and in our point cloud generation process to improve results. The results are evaluated in an autoencoding setup to offer both qualitative and quantitative analysis. The proposed decoder is validated by an extensive ablation study and is able to outperform current state of the art results in a number of experiments. We show the applicability of our method in the fields of point cloud upsampling, single view reconstruction, and shape synthesis.Item A Family of Barycentric Coordinates for Co-Dimension 1 Manifolds with Simplicial Facets(The Eurographics Association and John Wiley & Sons Ltd., 2019) Yan, Zhipei; Schaefer, Scott; Bommes, David and Huang, HuiWe construct a family of barycentric coordinates for 2D shapes including non-convex shapes, shapes with boundaries, and skeletons. Furthermore, we extend these coordinates to 3D and arbitrary dimension. Our approach modifies the construction of the Floater-Hormann-Kós family of barycentric coordinates for 2D convex shapes.We show why such coordinates are restricted to convex shapes and show how to modify these coordinates to extend to discrete manifolds of co-dimension 1 whose boundaries are composed of simplicial facets. Our coordinates are well-defined everywhere (no poles) and easy to evaluate. While our construction is widely applicable to many domains, we show several examples related to image and mesh deformation.Item Hierarchical Functional Maps between Subdivision Surfaces(The Eurographics Association and John Wiley & Sons Ltd., 2019) Shoham, Meged; Vaxman, Amir; Ben-Chen, Mirela; Bommes, David and Huang, HuiWe propose a novel approach for computing correspondences between subdivision surfaces with different control polygons. Our main observation is that the multi-resolution spectral basis functions that are often used for computing a functional correspondence can be compactly represented on subdivision surfaces, and therefore can be efficiently computed. Furthermore, the reconstruction of a pointwise map from a functional correspondence also greatly benefits from the subdivision structure. Leveraging these observations, we suggest a hierarchical pipeline for functional map inference, allowing us to compute correspondences between surfaces at fine subdivision levels, with hundreds of thousands of polygons, an order of magnitude faster than existing correspondence methods. We demonstrate the applicability of our results by transferring high-resolution sculpting displacement maps and textures between subdivision models.Item On Evaluating Consensus in RANSAC Surface Registration(The Eurographics Association and John Wiley & Sons Ltd., 2019) Hruda, Lukáš; Dvořák, Jan; Vasa, Libor; Bommes, David and Huang, HuiRandom Sample Consensus is a powerful paradigm that was successfully applied in various contexts, including Location Determination Problem, fundamental matrix estimation and global 3D surface registration, where many previously proposed algorithms can be interpreted as a particular implementation of this concept. In general, a set of candidate transformations is generated by some simple procedure, and an aligning transformation is chosen within this set, such that it aligns the largest portion of the input data. We observe that choosing the aligning transformation may also be interpreted as finding consensus among the candidates, which in turn involves measuring similarity of candidate rigid transformations. While it is not difficult to construct a metric that provides reasonable results, most approaches come with certain limitations and drawbacks. In this paper, we investigate possible means of measuring distances in SE(3) and compare their properties both theoretically and experimentally in a model RANSAC registration algorithm. We also propose modifications to existing measures and propose a novel method of locating the consensus transformation based on Vantage Point Tree data structure.Item Parallel Globally Consistent Normal Orientation of Raw Unorganized Point Clouds(The Eurographics Association and John Wiley & Sons Ltd., 2019) Jakob, Johannes; Buchenau, Christoph; Guthe, Michael; Bommes, David and Huang, HuiA mandatory component for many point set algorithms is the availability of consistently oriented vertex-normals (e.g. for surface reconstruction, feature detection, visualization). Previous orientation methods on meshes or raw point clouds do not consider a global context, are often based on unrealistic assumptions, or have extremely long computation times, making them unusable on real-world data. We present a novel massively parallelized method to compute globally consistent oriented point normals for raw and unsorted point clouds. Built on the idea of graph-based energy optimization, we create a complete kNN-graph over the entire point cloud. A new weighted similarity criterion encodes the graph-energy. To orient normals in a globally consistent way we perform a highly parallel greedy edge collapse, which merges similar parts of the graph and orients them consistently. We compare our method to current state-of-the-art approaches and achieve speedups of up to two orders of magnitude. The achieved quality of normal orientation is on par or better than existing solutions, especially for real-world noisy 3D scanned data.Item Structural Design Using Laplacian Shells(The Eurographics Association and John Wiley & Sons Ltd., 2019) Ulu, Erva; McCann, Jim; Kara, Levent Burak; Bommes, David and Huang, HuiWe introduce a method to design lightweight shell objects that are structurally robust under the external forces they may experience during use. Given an input 3D model and a general description of the external forces, our algorithm generates a structurally-sound minimum weight shell object. Our approach works by altering the local shell thickness repeatedly based on the stresses that develop inside the object. A key issue in shell design is that large thickness values might result in self-intersections on the inner boundary creating a significant computational challenge during optimization. To address this, we propose a shape parametrization based on the solution to the Laplace's equation that guarantees smooth and intersection-free shell boundaries. Combined with our gradient-free optimization algorithm, our method provides a practical solution to the structural design of hollow objects with a single inner cavity. We demonstrate our method on a variety of problems with arbitrary 3D models under complex force configurations and validate its performance with physical experiments.Item Structured Regularization of Functional Map Computations(The Eurographics Association and John Wiley & Sons Ltd., 2019) Ren, Jing; Panine, Mikhail; Wonka, Peter; Ovsjanikov, Maks; Bommes, David and Huang, HuiWe consider the problem of non-rigid shape matching using the functional map framework. Specifically, we analyze a commonly used approach for regularizing functional maps, which consists in penalizing the failure of the unknown map to commute with the Laplace-Beltrami operators on the source and target shapes. We show that this approach has certain undesirable fundamental theoretical limitations, and can be undefined even for trivial maps in the smooth setting. Instead we propose a novel, theoretically well-justified approach for regularizing functional maps, by using the notion of the resolvent of the Laplacian operator. In addition, we provide a natural one-parameter family of regularizers, that can be easily tuned depending on the expected approximate isometry of the input shape pair. We show on a wide range of shape correspondence scenarios that our novel regularization leads to an improvement in the quality of the estimated functional, and ultimately pointwise correspondences before and after commonly-used refinement techniques.