Computer Graphics & Visual Computing (CGVC) 2020
Permanent URI for this collection
Browse
Browsing Computer Graphics & Visual Computing (CGVC) 2020 by Subject "Image processing"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Breathing Life into Statues Using Augmented Reality(The Eurographics Association, 2020) Ioannou, Eleftherios; Maddock, Steve; Ritsos, Panagiotis D. and Xu, KaiAR art is a relatively recent phenomenon, one that brings innovation in the way that artworks can be produced and presented in real-world locations and environments. We present an AR art app, running in real time on a smartphone, that can be used to bring to life inanimate objects such as statues. The work relies on a virtual copy of the real object, which is produced using photogrammetry, as well as a skeleton rig for subsequent animation. As part of the work, we present a new diminishing reality technique, based on the use of particle systems, to make the real object 'disappear' and be replaced by the animating virtual copy, effectively animating the inanimate. The approach is demonstrated on two objects: a juice carton and a small giraffe sculpture.Item Simulating Dynamic Ecosystems with Co-Evolutionary Agents(The Eurographics Association, 2020) Ferguson, Gary; Vidal, Franck; Ritsos, Panagiotis D. and Xu, KaiAs video games grow in complexity and require increasingly large and immersive environments, there is a need for more believable and dynamic characters not controlled by the player, known as non-player character (NPC). Video game developers will often face the challenge of designing these NPCs in a time efficient manner. We propose an agent-based Cooperative Co-evolution Algorithm (CCEA) where NPCs are implemented as artificial life (AL) agents that are created through an evolutionary process based on simple rules. The virtual environment can be filled with a range of interesting agents, each acting independently from one another, to fulfil their own wants and needs. The proposed middleware framework is suitable for computer animation of NPCs and the development of video games, especially where swarm intelligence is simulated. We proved that agents implemented with a very limited number of variables making up their genome can be successfully integrated in a co-evolutionary multi-agent system (CoEMAS). Results showed promising levels of speciation and interesting emergent and plausible behaviours amongst the agents.